login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255798 Number of (n+2) X (5+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 3. 1
733, 340, 256, 268, 286, 290, 472, 630, 674, 748, 814, 866, 1540, 2190, 2414, 2668, 2926, 3170, 5812, 8430, 9374, 10348, 11374, 12386, 22900, 33390, 37214, 41068, 45166, 49250, 91252, 133230, 148574, 163948, 180334, 196706, 364660, 532590 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = 5*a(n-6) - 4*a(n-12) for n>15.

Empirical g.f.: x*(733 + 340*x + 256*x^2 + 268*x^3 + 286*x^4 + 290*x^5 - 3193*x^6 - 1070*x^7 - 606*x^8 - 592*x^9 - 616*x^10 - 584*x^11 + 2112*x^12 + 400*x^13 + 68*x^14) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 - 2*x^3)*(1 + 2*x^3)). - Colin Barker, Dec 20 2018

EXAMPLE

Some solutions for n=4:

..0..1..1..0..0..1..0....0..1..0..1..0..1..1....0..1..0..1..0..1..0

..1..0..0..1..1..0..1....1..1..0..0..1..0..1....0..0..1..0..1..0..1

..0..1..0..1..0..1..0....0..0..1..1..0..1..0....0..1..0..1..0..1..0

..0..0..1..0..1..1..0....1..0..1..0..1..0..0....1..0..1..0..1..0..1

..1..1..0..1..0..0..1....0..1..0..1..1..0..0....0..1..0..1..0..1..0

..1..1..1..0..1..0..1....1..1..1..0..0..1..1....1..0..1..0..1..0..1

CROSSREFS

Column 5 of A255801.

Sequence in context: A098263 A289571 A098291 * A044988 A288882 A178093

Adjacent sequences:  A255795 A255796 A255797 * A255799 A255800 A255801

KEYWORD

nonn

AUTHOR

R. H. Hardin, Mar 06 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 15 16:13 EDT 2019. Contains 324142 sequences. (Running on oeis4.)