login
Number of (n+2)X(1+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 1 and no row sum 0 and no column sum 0
1

%I #4 Mar 06 2015 11:34:49

%S 140,436,1512,5126,17325,58707,198635,672183,2274999,7699081,26056081,

%T 88181805,298433705,1009989977,3418112157,11567925109,39149360907,

%U 132493286347,448397385023,1517512474487,5135721548305,17380836236957

%N Number of (n+2)X(1+2) 0..1 arrays with no 3x3 subblock diagonal sum 1 and no antidiagonal sum 1 and no row sum 0 and no column sum 0

%C Column 1 of A255783

%H R. H. Hardin, <a href="/A255776/b255776.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) +4*a(n-2) +3*a(n-3) +a(n-4) -7*a(n-5) -6*a(n-6) -20*a(n-7) -16*a(n-8) -25*a(n-9) -25*a(n-10) -20*a(n-11) -21*a(n-12) -7*a(n-13) -6*a(n-14) +4*a(n-15) +4*a(n-16) +4*a(n-17) +2*a(n-18)

%e Some solutions for n=4

%e ..0..1..0....1..0..1....1..0..1....1..1..1....1..1..1....1..1..1....1..0..1

%e ..0..1..1....1..1..1....0..1..1....0..1..1....1..1..1....1..0..0....1..1..1

%e ..1..1..1....1..1..1....0..1..1....1..1..1....1..1..1....1..1..1....0..1..1

%e ..0..1..1....1..1..1....1..1..1....0..1..1....1..1..1....1..1..1....1..1..1

%e ..1..1..0....0..1..1....1..1..1....1..1..1....0..1..0....0..1..0....1..1..1

%e ..1..1..1....0..0..1....0..1..1....0..0..1....1..0..0....1..1..0....1..0..1

%Y Cf. A255783

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 06 2015