%I #23 Mar 16 2015 09:25:38
%S 1,1,1,1,2,1,1,3,3,1,1,4,5,3,1,1,5,7,7,4,1,1,6,9,13,9,4,1,1,7,11,21,
%T 16,11,4,1,1,8,13,31,25,22,13,4,1,1,9,15,43,36,37,28,15,5,1,1,10,17,
%U 57,49,56,49,40,17,5,1,1,11,19,73,64,79,76,85,43,19,5,1,1,12,21,91,81,106,109,156,89,49,21,5,1
%N Square array read by antidiagonals upwards: T(n,k), n>=1, k>=1, in which row n lists the partial sums of the n-th row of the square array of A255740.
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%e The corner of the square array with the first 15 terms of the first 12 rows looks like this:
%e -------------------------------------------------------------------------
%e A000012: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
%e A070941: 1, 2, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5
%e A005408: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29
%e A151788: 1, 4, 7, 13, 16, 22, 28, 40, 43, 49, 55, 67, 73, 85, 97
%e A147562: 1, 5, 9, 21, 25, 37, 49, 85, 89, 101, 113, 149, 161, 197, 233
%e A151790: 1, 6,11, 31, 36, 56, 76, 156, 161, 181, 201, 281, 301, 381, 461
%e A151781: 1, 7,13, 43, 49, 79,109, 259, 265, 295, 325, 475, 505, 655, 805
%e A151792: 1, 8,15, 57, 64,106,148, 400, 407, 449, 491, 743, 785,1037,1289
%e A151793: 1, 9,17, 73, 81,137,193, 585, 593, 649, 705,1097,1153,1545,1937
%e A255764: 1,10,19, 91,100,172,244, 820, 829, 901, 973,1549,1621,2197,2773
%e A255765: 1,11,21,111,121,211,301,1111,1121,1211,1301,2111,2201,3011,3821
%e A255766: 1,12,23,133,144,254,364,1464,1475,1585,1695,2795,2905,4005,5105
%e ...
%Y Rows 1-12: A000012, A070941, A005408, A151788, A147562, A151790, A151781, A151792, A151793, A255764, A255765, A255766.
%Y Columns 1-10: A000012, A000027, A005408, A002061, A000290, A084849, A056107, A053698, A100705, A100104.
%Y Cf. A000120, A255740.
%K nonn,tabl
%O 1,5
%A _Omar E. Pol_, Mar 05 2015