This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255672 Coefficient of x^n in Product_{k>=1} 1/(1-x^k)^(k*n). 13
 1, 1, 7, 37, 215, 1251, 7459, 44885, 272727, 1668313, 10263057, 63423482, 393440867, 2448542136, 15280435191, 95588065737, 599213418327, 3763242239317, 23673166664695, 149138199543613, 940796936557265, 5941862248557566, 37568309060087582, 237767215209245583 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Number of partitions of n when parts i are of n*i kinds. - Alois P. Heinz, Nov 23 2018 LINKS Vaclav Kotesovec and Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from Vaclav Kotesovec) FORMULA a(n) ~ c * d^n / sqrt(n), where d = 6.468409145117839606941857350154192468889057616577..., c = 0.25864792865819067933968646380369970564... . - Vaclav Kotesovec, Mar 01 2015 a(n) = [x^n] exp(n*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 30 2018 MAPLE b:= proc(n, k) option remember; `if`(n=0, 1, k*add(       b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)     end: a:= n-> b(n\$2): seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015 MATHEMATICA Table[SeriesCoefficient[Product[1/(1-x^k)^(k*n), {k, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 01 2015 *) CROSSREFS Cf. A008485, A252782, A270913, A270922. Main diagonal of A255961. Sequence in context: A319013 A126475 A274674 * A077239 A046235 A297329 Adjacent sequences:  A255669 A255670 A255671 * A255673 A255674 A255675 KEYWORD nonn AUTHOR Vaclav Kotesovec, Mar 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 22:06 EST 2019. Contains 329963 sequences. (Running on oeis4.)