login
A255669
Primes p such that p divides the concatenation of the next two primes.
0
3, 7, 61, 167
OFFSET
1,1
COMMENTS
No additional terms up to the 5-millionth prime. Is the sequence finite and complete?
No additional terms up to the billionth prime. - Chai Wah Wu, Mar 10 2015
a(5) > 10^18. If the reasonable assumption nextprime(p) < p + (log p)^2 holds, then a(5) > 10^53. However, the 192-digits prime
7046979865771812080536912751677852348993288590604026845637583892...
6174496644295302013422818791946308724832214765100671140939597315...
4362416107382550335570469798657718120805369127516778523489932887 is in the sequence. - Giovanni Resta, May 08 2015
EXAMPLE
The three primes beginning with 61 are 61, 67, and 71, and 61 evenly divides 6771.
MATHEMATICA
divQ[{a_, b_, c_}]:=Divisible[FromDigits[Flatten[IntegerDigits/@{b, c}]], a]; Transpose[Select[Partition[Prime[Range[500]], 3, 1], divQ]][[1]]
PROG
(Python)
from sympy import nextprime
A255669_list, p1, p2, l = [], 2, 3, 10
for n in range(10**8):
....p3 = nextprime(p2)
....if p3 >= l: # this test is sufficient by Bertrand-Chebyshev theorem
........l *= 10
....if not ((p2 % p1)*l + p3) % p1:
........A255669_list.append(p1)
....p1, p2 = p2, p3 # Chai Wah Wu, Mar 09 2015
CROSSREFS
Sequence in context: A084289 A183174 A329966 * A258184 A362347 A077703
KEYWORD
nonn,base
AUTHOR
Harvey P. Dale, Mar 01 2015
STATUS
approved