%I #9 Dec 31 2017 01:42:23
%S 1,1,1,1,1,1,1,1,2,1,1,2,3,2,1,1,2,4,5,4,1,1,2,5,8,9,5,1,1,2,6,11,16,
%T 15,8,1,1,2,7,14,25,32,27,11,1,1,3,8,18,36,55,64,46,16,1,1,3,9,22,49,
%U 88,125,128,81,22,1,1,3,10,27,64,129,216,279,256,140,32,1,1,3,11,31,81,181,343,529,625,512,243,45,1
%N Table read by antidiagonals, T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.
%H G. C. Greubel, <a href="/A255616/b255616.txt">Table of n, a(n) for the first 100 antidaigonals, flattened</a>
%H Kival Ngaokrajang, <a href="/A255616/a255616.pdf">Example of table T(n,k), n = 0..12, k = 1..10</a>
%F T(n,k) = floor(sqrt(k^n)), n >= 0, k >=1.
%e See table in the links.
%t T[n_, k_] := Floor[Sqrt[k^n]]; Table[T[k, n + 1 - k], {n, 0, 15}, {k, 0, n}] (* _G. C. Greubel_, Dec 30 2017 *)
%o (PARI){for(i=1,20,for(n=0,i-1,a=floor(sqrt((i-n)^n));print1(a,", ")))}
%Y Rows(1..10): A000012, A000196, A000027, A000093, A000290, A155013, A000578, A155014, A000583, A238170.
%Y Columns(1..10): A000012, A017910, A017913, A000079, A017919, A017922, A017925, A017928, A000244, A017934.
%Y Diagonals: A190343, A066642, A075264.
%K nonn,tabl
%O 0,9
%A _Kival Ngaokrajang_, Feb 28 2015
%E Terms a(81) onward added by _G. C. Greubel_, Dec 30 2017