login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255615 a(n) is the number of even A098550 terms less than 2*prime(n) but occurring after 2*prime(n). 3
0, 0, 0, 3, 1, 2, 1, 0, 0, 1, 3, 1, 1, 3, 1, 1, 1, 1, 0, 1, 1, 3, 0, 0, 0, 2, 1, 0, 1, 0, 1, 2, 1, 2, 0, 0, 2, 0, 0, 1, 2, 1, 1, 0, 0, 0, 4, 3, 2, 2, 2, 0, 0, 4, 5, 1, 2, 1, 1, 2, 0, 1, 0, 1, 0, 0, 0, 2, 0, 0, 1, 1, 2, 1, 2, 1, 0, 1, 2, 2, 4, 4, 1, 0, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

LINKS

Peter J. C. Moses, Table of n, a(n) for n = 1..1000

David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669 [math.NT], 2015.

EXAMPLE

Let A=A098550. Let n=4, prime(4)=7, 2*prime(4)=14 = A(8). We have 2=A(2), 4=A(4), 6=A(10), 8=A(6), 10=A(16), 12=A(12). Thus 6,10 and 12 appear in A later than 14. So a(4)=3.

MATHEMATICA

terms = 87;

f[lst_] := Block[{k = 4}, While[ GCD[ lst[[-2]], k] == 1 || GCD[ lst[[-1]], k] > 1 || MemberQ[lst, k], k++]; Append[lst, k]]; A098550 = Nest[f, {1, 2, 3}, 12 terms] ;

a[n_] := Module[{p, pos}, p = Prime[n]; pos = FirstPosition[A098550, 2 p][[1]]; Count[A098550[[pos+1 ;; 12 terms]], k_ /; EvenQ[k] && k < 2 p]];

Array[a, terms] (* Jean-Fran├žois Alcover, Dec 12 2018, after Robert G. Wilson v in A098550 *)

CROSSREFS

Cf. A098550, A000040.

Sequence in context: A226590 A261349 A227962 * A056931 A139569 A201590

Adjacent sequences:  A255612 A255613 A255614 * A255616 A255617 A255618

KEYWORD

nonn

AUTHOR

Vladimir Shevelev, Feb 28 2015

EXTENSIONS

More terms from Peter J. C. Moses, Feb 28 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 8 08:49 EST 2019. Contains 329862 sequences. (Running on oeis4.)