The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255611 G.f.: Product_{k>=1} 1/(1-x^k)^(4*k). 9
 1, 4, 18, 64, 215, 660, 1938, 5400, 14527, 37728, 95278, 234344, 563506, 1326796, 3066040, 6963048, 15564661, 34282360, 74486376, 159785472, 338703796, 709957616, 1472529670, 3023894672, 6151408852, 12402137024, 24792822174, 49162962280, 96737562642 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 Vaclav Kotesovec, A method of finding the asymptotics of q-series based on the convolution of generating functions, arXiv:1509.08708 [math.CO], Sep 30 2015, p. 19. Eric Weisstein's World of Mathematics, Plane Partition Wikipedia, Plane partition FORMULA G.f.: Product_{k>=1} 1/(1-x^k)^(4*k). a(n) ~ 2^(1/3) * Zeta(3)^(5/18) * exp(1/3 + 3 * Zeta(3)^(1/3) * n^(2/3)) / (A^4 * sqrt(3*Pi) * n^(7/9)), where A = A074962 = 1.2824271291... is the Glaisher-Kinkelin constant and Zeta(3) = A002117 = 1.202056903... . - Vaclav Kotesovec, Feb 28 2015 G.f.: exp(4*Sum_{k>=1} x^k/(k*(1 - x^k)^2)). - Ilya Gutkovskiy, May 29 2018 MAPLE a:= proc(n) option remember; `if`(n=0, 1, 4*add(       a(n-j)*numtheory[sigma][2](j), j=1..n)/n)     end: seq(a(n), n=0..30);  # Alois P. Heinz, Mar 11 2015 MATHEMATICA nmax=50; CoefficientList[Series[Product[1/(1-x^k)^(4*k), {k, 1, nmax}], {x, 0, nmax}], x] CROSSREFS Cf. A000219, A161870, A255610, A255612, A255613, A255614, A193427. Column k=4 of A255961. Sequence in context: A212766 A100177 A083321 * A022728 A231950 A246134 Adjacent sequences:  A255608 A255609 A255610 * A255612 A255613 A255614 KEYWORD nonn AUTHOR Vaclav Kotesovec, Feb 28 2015 EXTENSIONS New name from Vaclav Kotesovec, Mar 12 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 06:24 EDT 2020. Contains 337317 sequences. (Running on oeis4.)