OFFSET
1,1
COMMENTS
The sequence satisfies a(1) = 3, a(2) = 5, and a(n+2) is the smallest odd prime with the following property: a(n) is the smallest odd prime divisor of a(n+1)+a(n+2). It is a provably infinite sequence. It is also the "reverse" of a prime Fibonacci sequence terminating in 5,3. A prime Fibonacci sequence satisfies the following relation: a(n+2) is the smallest odd prime dividing a(n)+a(n+1), unless a(n)+a(n+1) is a power of two, in which case the sequence terminates. Prime Fibonacci sequences provably terminate, but provably can be extended indefinitely to the left.
LINKS
J. F. Alm and T. Herald, A Note on Prime Fibonacci Sequences, Fibonacci Quarterly 54:1 (2016), pp. 55-58. arXiv:1507.04807 [math.NT], 2015.
PROG
(Python)
import math
def sieve(n):
r = int(math.floor(math.sqrt(n)))
composites = [j for i in range(2, r+1) for j in range(2*i, n, i)]
primes = set(range(2, n)).difference(set(composites))
return sorted(primes)
Primes = sieve(1000000)
Odd_primes = Primes[1:]
def find_smallest_odd_div(n):
for p in Odd_primes:
if n % p == 0:
return p
def next_term(a, b):
for p in Odd_primes:
if (p + b) % a == 0:
if find_smallest_odd_div(p+b) == a:
return p
def compute_reversed_seq(a, b):
seq = [a, b]
while seq[-1] != None:
seq.append(next_term(seq[-2], seq[-1]))
return seq[:len(seq)-1]
print(compute_reversed_seq(3, 5))
(Python)
from sympy import isprime, factorint
from itertools import islice
def rem2(n):
while n%2 == 0: n //= 2
return n
def agen():
b, c = 3, 5
yield 3
while True:
yield c
k = (c+2)//b + 1
m = b*k
while not isprime(m-c) or min(factorint(rem2(k)), default=b+1) < b:
m += b
k += 1
b, c = c, m-c
print(list(islice(agen(), 19))) # Michael S. Branicky, Apr 12 2022
(PARI) lista(nn) = {print1(pp=3, ", "); print1(p=5, ", "); for (n=1, nn, forprime(q=3, , s = (p+q)/ 2^(valuation(p+q, 2)); if ((s!=1) && pp == factor(s)[1, 1], np = q; break); ); print1(np, ", "); pp = p; p = np; ); } \\ Michel Marcus, Jul 11 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Jeremy F. Alm, Jul 10 2015
EXTENSIONS
a(16)-a(23) from Giovanni Resta, Jul 17 2015
STATUS
approved