%I #8 Apr 20 2016 05:06:40
%S 3,0,4,8,3,3,0,3,0,6,5,2,2,3,4,8,5,6,6,9,1,1,9,2,0,4,1,7,3,3,7,6,1,3,
%T 0,1,5,8,8,5,3,1,3,4,7,5,6,8,9,0,4,9,1,8,4,5,2,5,4,8,3,6,9,7,6,8,4,8,
%U 3,4,1,6,5,3,3,9,0,8,8,1,4,5,1,4,6,6,7,7,6,7,0,2,2,1,6,0,5,1,6,7,7,1,9,1,8
%N Decimal expansion of a constant related to A255322.
%F Equals limit n->infinity (Product_{k=0..n} (k^2)!) / (n^((2*n + 1)*(2*n^2 + 2*n + 3)/6) * (2*Pi)^(n/2) / exp(5*n^3/9 + n^2/2 + n)).
%F Equals sqrt(2*Pi) * exp(Zeta(3)/(2*Pi^2)) * Product_{n>=1} ((n^2)!/stirling(n^2)), where stirling(n^2) = sqrt(2*Pi) * n^(2*n^2+1) / exp(n^2) is the Stirling approximation of (n^2)!. - _Vaclav Kotesovec_, Apr 20 2016
%e 3.048330306522348566911920417337613015885313475689049184525483697684834...
%Y Cf. A255322, A255511, A255438, A255439.
%Y Cf. A074962, A243262, A243263, A243264, A243265.
%K nonn,cons
%O 1,1
%A _Vaclav Kotesovec_, Feb 24 2015