login
Decimal expansion of a constant related to A255322.
8

%I #8 Apr 20 2016 05:06:40

%S 3,0,4,8,3,3,0,3,0,6,5,2,2,3,4,8,5,6,6,9,1,1,9,2,0,4,1,7,3,3,7,6,1,3,

%T 0,1,5,8,8,5,3,1,3,4,7,5,6,8,9,0,4,9,1,8,4,5,2,5,4,8,3,6,9,7,6,8,4,8,

%U 3,4,1,6,5,3,3,9,0,8,8,1,4,5,1,4,6,6,7,7,6,7,0,2,2,1,6,0,5,1,6,7,7,1,9,1,8

%N Decimal expansion of a constant related to A255322.

%F Equals limit n->infinity (Product_{k=0..n} (k^2)!) / (n^((2*n + 1)*(2*n^2 + 2*n + 3)/6) * (2*Pi)^(n/2) / exp(5*n^3/9 + n^2/2 + n)).

%F Equals sqrt(2*Pi) * exp(Zeta(3)/(2*Pi^2)) * Product_{n>=1} ((n^2)!/stirling(n^2)), where stirling(n^2) = sqrt(2*Pi) * n^(2*n^2+1) / exp(n^2) is the Stirling approximation of (n^2)!. - _Vaclav Kotesovec_, Apr 20 2016

%e 3.048330306522348566911920417337613015885313475689049184525483697684834...

%Y Cf. A255322, A255511, A255438, A255439.

%Y Cf. A074962, A243262, A243263, A243264, A243265.

%K nonn,cons

%O 1,1

%A _Vaclav Kotesovec_, Feb 24 2015