This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255474 a(n) = A255473(2^n-1). 2
 1, 6, 24, 88, 336, 1280, 4928, 19072, 74240, 290304, 1139712, 4489216, 17731584, 70197248, 278429696, 1106083840, 4399628288, 17518559232, 69815500800, 278424715264, 1110989340672, 4435189170176, 17712382214144, 70757707153408, 282733687341056, 1129973180006400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package. Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015. N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015. Index entries for linear recurrences with constant coefficients, signature (6,-4,-16). FORMULA G.f.: (1-8*x^2-16*x^3) / ((1-4*x)*(1-2*x-4*x^2)). From Colin Barker, Feb 05 2017: (Start) a(n) = 4^n + (-(1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n)) / (2*sqrt(5)) for n>0. a(n) = 6*a(n-1) - 4*a(n-2) - 16*a(n-3) for n>3. (End) PROG (PARI) Vec((1-8*x^2-16*x^3) / ((1-4*x)*(1-2*x-4*x^2)) + O(x^30)) \\ Colin Barker, Feb 05 2017 CROSSREFS Cf. A255473. Sequence in context: A271789 A121532 A025472 * A249976 A181618 A002919 Adjacent sequences:  A255471 A255472 A255473 * A255475 A255476 A255477 KEYWORD nonn,easy AUTHOR N. J. A. Sloane and Doron Zeilberger, Feb 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 23 18:13 EDT 2019. Contains 321433 sequences. (Running on oeis4.)