

A255439


Decimal expansion of a constant related to A255360.


4



1, 1, 3, 5, 4, 9, 5, 4, 7, 4, 9, 7, 2, 9, 7, 8, 2, 3, 1, 2, 1, 0, 6, 6, 3, 0, 5, 9, 2, 4, 5, 0, 2, 1, 5, 7, 8, 1, 0, 1, 4, 0, 4, 6, 1, 3, 7, 1, 2, 0, 0, 7, 9, 8, 3, 2, 9, 2, 8, 0, 2, 3, 9, 6, 0, 7, 8, 8, 1, 8, 8, 2, 6, 2, 8, 0, 7, 9, 9, 1, 2, 5, 1, 5, 9, 3, 6
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,3


LINKS

Table of n, a(n) for n=2..88.


FORMULA

Equals limit n>infinity (Product_{k=0..n} (k^5)!) / (n^(80/63 + 5*n/2  5*n^2/12 + 25*n^4/12 + 5*n^5/2 + (5*n^6)/6) * (2*Pi)^(n/2) / exp(5*n/2 + 35*n^2/144 + n^5/2 + 11*n^6/36)).
Equals 2^(5/4)*Pi^(5/4)*exp(137/3024  5*Zeta'(5)) * Product_{n>=1} ((n^5)! / stirling(n^5)), where stirling(n^5) = sqrt(2*Pi) * n^(5*n^5 + 5/2) / exp(n^5) is the Stirling approximation of (n^5)! and Zeta'(5) = A259070.  Vaclav Kotesovec, Apr 20 2016


EXAMPLE

11.354954749729782312106630592450215781014...


CROSSREFS

Cf. A255360, A255504, A255511, A255438.
Cf. A074962, A243262, A243263, A243264, A243265.
Sequence in context: A200700 A075380 A248497 * A177983 A294673 A078439
Adjacent sequences: A255436 A255437 A255438 * A255440 A255441 A255442


KEYWORD

nonn,cons


AUTHOR

Vaclav Kotesovec, Feb 24 2015


STATUS

approved



