login
A255334
Numbers n for which there exists k > n such that A000203(k) = A000203(n) and A007947(k) = A007947(n), where A000203 gives the sum of divisors, and A007947 gives the squarefree kernel of n.
8
1512, 7560, 16632, 19656, 25704, 28728, 34776, 37800, 43848, 44928, 46872, 55944, 61992, 65016, 71064, 80136, 83160, 89208, 92232, 98280, 101304, 107352, 110376, 119448, 125496, 128520, 134568, 143640, 146664, 152712, 155736, 161784, 164808, 170856, 173880, 182952, 189000, 192024, 198072, 207144, 210168, 216216
OFFSET
1,1
COMMENTS
None of the terms are squarefree, because if there were such x, then we would have rad(x) = x, and for any value k > x such that rad(k) = x we would have k = y*x, for some strictly positive integer y, and in that case sigma(k) > sigma(x). Thus all terms are members of sequence A013929.
None of the terms in range a(1) .. a(6589) occur in A255335. Are the sequences disjoint forever?
LINKS
FORMULA
a(n) = A255424(n) * A255425(n).
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
isA255334(n) = { my(r=A007947(n), s=sigma(n), k=n+r); while(k<s, if((sigma(k) == s)&&(A007947(k) == r), return(1), k = k+r)); return(0); };
i=0; for(n=1, 2^25, if(isA255334(n), i++; write("b255334.txt", i, " ", n)))
(Scheme, with Antti Karttunen's IntSeq-library. Quite naive and slow implementation.)
(define A255334 (MATCHING-POS 1 1 isA255334?))
(define (isA255334? n) (let ((sig_n (A000203 n)) (rad_n (A007947 n))) (let loop ((try (+ n rad_n))) (cond ((>= try sig_n) #f) ((and (= sig_n (A000203 try)) (= rad_n (A007947 try))) #t) (else (loop (+ try rad_n)))))))
CROSSREFS
Subsequence of A013929.
Cf. also A255423 (gives the corresponding k), A255335 (same sequence sorted into ascending order, with duplicates removed), A255412 [gives sigma(a(n))], A255424 [gives rad(a(n))], A255425, A254035, A254791.
Sequence in context: A060676 A230402 A248718 * A255778 A236091 A239175
KEYWORD
nonn
AUTHOR
Antti Karttunen, Mar 23 2015
STATUS
approved