login
A255328
a(n) = total number of nodes in the finite subtrees branching "left" (to the "smaller side") from the node n in the infinite trunk of "number-of-runs beanstalk" (A255056).
8
1, 1, 0, 4, 0, 0, 7, 0, 3, 0, 0, 1, 1, 6, 0, 6, 0, 3, 0, 0, 1, 1, 12, 0, 1, 5, 0, 0, 1, 6, 0, 6, 0, 3, 0, 0, 1, 1, 12, 0, 1, 0, 0, 12, 1, 0, 1, 5, 0, 0, 1, 12, 0, 1, 5, 0, 0, 1, 6, 0, 6, 0, 3, 0, 0, 1, 1, 12, 0, 1, 0, 0, 12, 1, 0, 1, 0, 0, 10, 1, 0, 0, 0, 11, 1, 0, 1, 5, 0, 0, 1, 12, 0, 1, 0, 0, 12, 1, 0, 1, 5, 0, 0, 1, 12, 0, 1, 5, 0, 0, 1, 6, 0, 6, 0, 3, 0, 0, 1
OFFSET
0,4
LINKS
FORMULA
a(0) = 1; a(n) = sum_{k = A091067(A255057(n)) .. A255056(n+1)} A255327(k).
a(n) = A255330(n) - A255329(n).
EXAMPLE
See example in A255330. Here we count only the nodes at the left side, thus a(11) = 1.
PROG
(Scheme)
(define (A255328 n) (if (zero? n) 1 (add A255327 (A091067 (A255057 n)) (A255056 (+ n 1)))))
;; Other code as in A255327.
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 21 2015
STATUS
approved