This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255301 a(n) = A255300(2^k-1). 2
 1, 4, 16, 56, 196, 680, 2348, 8096, 27892, 96056, 330748, 1138768, 3920644, 13498088, 46471180, 159990272, 550811156, 1896319640, 6528602140, 22476505520, 77381536036, 266407155784, 917179667500, 3157642420064, 10871049557044, 37426567849976, 128851218332732, 443605636686608, 1527233994485572 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package. Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015. N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2 N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015. Index entries for linear recurrences with constant coefficients, signature (4,-1,-2,-4). FORMULA G.f.: (1-x)*(1+x+2*x^2) / (1-4*x+x^2+2*x^3+4*x^4). a(n) = 4*a(n-1) - a(n-2) - 2*a(n-3) - 4*a(n-4) for n>3. - Colin Barker, Feb 04 2017 MATHEMATICA LinearRecurrence[{4, -1, -2, -4}, {1, 4, 16, 56}, 30] (* Jean-François Alcover, Oct 10 2018 *) PROG (PARI) Vec((1-x)*(1+x+2*x^2) / (1-4*x+x^2+2*x^3+4*x^4) + O(x^30)) \\ Colin Barker, Feb 04 2017 CROSSREFS Cf. A255300. Sequence in context: A026155 A025182 A057585 * A097128 A006079 A218263 Adjacent sequences:  A255298 A255299 A255300 * A255302 A255303 A255304 KEYWORD nonn,easy AUTHOR N. J. A. Sloane and Doron Zeilberger, Feb 23 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 10:09 EDT 2019. Contains 321368 sequences. (Running on oeis4.)