login
Number of 1's in expansion of F^n mod 3, where F = 1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y.
6

%I #5 Feb 21 2015 15:01:22

%S 1,8,8,8,64,52,8,64,101,8,64,64,64,512,404,52,416,448,8,64,233,64,512,

%T 700,101,808,992,8,64,64,64,512,416,64,512,808,64,512,512,512,4096,

%U 3220,404,3232,3224,52,416,832,416,3328

%N Number of 1's in expansion of F^n mod 3, where F = 1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y.

%C A255287 and A255288 together are a mod 3 analog of A160239.

%e The pairs [no. of 1's, no. of 2's] are [1, 0], [8, 0], [8, 13], [8, 0], [64, 0], [52, 32], [8, 13], [64, 104], [101, 112], [8, 0], [64, 0], [64, 104], [64, 0], [512, 0], [404, 184], [52, 32], [416, 256], [448, 296], [8, 13], [64, 104], [233, 208], [64, 104], [512, 832], [700, 836], [101, 112], [808, 896], [992, 1081], ...

%p # C3 Counts 1's and 2's

%p C3 := proc(f) local c,ix,iy,f2,i,t1,t2,n1,n2;

%p f2:=expand(f) mod 3; n1:=0; n2:=0;

%p if whattype(f2) = `+` then

%p t1:=nops(f2);

%p for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);

%p c:=coeff(coeff(t2,x,ix),y,iy);

%p if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1,n2]);

%p else ix:=degree(f2, x); iy:=degree(f2, y);

%p c:=coeff(coeff(f2,x,ix),y,iy);

%p if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1,n2]);

%p fi;

%p end;

%p F1:=1/(x*y)+1/y+x/y+1/x+x+y/x+y+x*y mod 3;

%p g:=(F,n)->expand(F^n) mod 3;

%p [seq(C3(g(F1,n))[1],n=0..60)];

%Y Cf. A160239, A255288-A255294.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Feb 21 2015