%I #11 May 10 2023 08:21:18
%S 1,7,31,127,511,2031,8043,31735,125063,492367,1937763,7624303,
%T 29995559,118000431,464192219,1826013415,7183010967,28255752751,
%U 111149170563,437224979743,1719900889847,6765528227247,26613372893339,104688284286487
%N a(n) = A255281(2^n-1).
%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.01796">A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata</a>, arXiv:1503.01796, 2015; see also the <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html">Accompanying Maple Package</a>.
%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.04249">Odd-Rule Cellular Automata on the Square Grid</a>, arXiv:1503.04249, 2015.
%H N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: <a href="https://vimeo.com/119073818">Part 1</a>, <a href="https://vimeo.com/119073819">Part 2</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168, 2015
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F G.f.: -(1+2*t-4*t^2-7*t^3+5*t^4-2*t^5+9*t^7-2*t^8+6*t^9)/(-1+5*t-21*t^3+18*t^4+3*t^5-24*t^6+31*t^7-11*t^8+22*t^9+10*t^10).
%Y Cf. A255281.
%K nonn
%O 0,2
%A _N. J. A. Sloane_ and _Doron Zeilberger_, Feb 19 2015