%I #8 Mar 17 2015 20:28:53
%S 1,8,28,128,480,2008,7776,31672,124528,500792,1982144,7926808,
%T 31474832,125567832,499339552,1989964024,7918843056,31542845816,
%U 125560568192,500031498968,1990726198480,7927069429912,31561303322592,125671455827384
%N A255275(2^n-1).
%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.01796">A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata</a>, arXiv:1503.01796, 2015; see also the <a href="http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/CAcount.html">Accompanying Maple Package</a>.
%H Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, <a href="http://arxiv.org/abs/1503.04249">Odd-Rule Cellular Automata on the Square Grid</a>, arXiv:1503.04249, 2015.
%H N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: <a href="https://vimeo.com/119073818">Part 1</a>, <a href="https://vimeo.com/119073819">Part 2</a>
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168, 2015
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%F G.f.: -(-1+20*t^2-56*t^3+49*t^4+36*t^5-128*t^6+128*t^7)/(1-8*t+16*t^2+24*t^3-145*t^4+236*t^5-164*t^6+24*t^7+32*t^8).
%Y Cf. A255275.
%K nonn
%O 0,2
%A _N. J. A. Sloane_ and _Doron Zeilberger_, Feb 19 2015