

A255268


a(n) = Product_{k=1..n} k!^n.


7



1, 4, 1728, 6879707136, 49302469038676377600000, 237376313799769806328950291431424000000000000, 487929826521303413461947888047619993419888153407795494912000000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..7.
Eric Weisstein's World of Mathematics, Barnes GFunction
Eric Weisstein's World of Mathematics, Superfactorial


FORMULA

a(n) = A000178(n)^n.
a(n) ~ exp(1/12 + n/12  n^2  3*n^3/4) * n^(5*n/12 + n^2 + n^3/2) * 2^(n/2 + n^2/2) * Pi^(n/2 + n^2/2) / A^n, where A = 1.28242712910062263687534256886979... is the GlaisherKinkelin constant (see A074962).


MATHEMATICA

Table[Product[k!, {k, 1, n}]^n, {n, 1, 10}]
Table[BarnesG[n+2]^n, {n, 1, 10}]


CROSSREFS

Cf. A000178, A055462, A074962, A255269.
Sequence in context: A278794 A141090 A307580 * A079402 A198975 A160300
Adjacent sequences: A255265 A255266 A255267 * A255269 A255270 A255271


KEYWORD

nonn


AUTHOR

Vaclav Kotesovec, Feb 20 2015


STATUS

approved



