The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A255237 Array of conversion coefficients for the minimal polynomials C of 2 cos(Pi/n) in terms of Chebyshev's S-polynomials. 2
 1, 2, 1, 0, 1, -1, 1, -1, 0, 1, 0, -1, 1, -2, 0, 1, 0, 0, -1, 1, 0, 0, -1, 0, 1, -1, -1, 0, 1, 2, 0, -2, 0, 1, 0, 0, 0, 0, -1, 1, -1, 0, -1, 0, 1, 0, 0, 0, 0, 0, -1, 1, -2, 0, 2, 0, -2, 0, 1, -1, -2, -1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The row length sequence is 1, 1 +  A055034(n), n >= 1. For the minimal polynomial C(n, x) of the algebraic number rho(n) := 2*cos(Pi/n) (the length ratio of the smallest diagonal and the side of a regular n-gon) see the coefficient array in A187360. The coefficient triangle of Chebyshev's S-polynomials is given in A049310. The conversion is C(n, x) = sum(T(n, m)*S(m, x), m=0..delta(n)), for n >= 0 with C(0, x) := 1 (undefined product), delta(0) = 0 and delta(n) = A055034(n), n >= 1. Originally Ahmet Zahid KÜÇÜK observed the structure for prime n. The precise formula for odd primes prime(n) = A000040(n), n >= 2, is C(prime(n), x) = S((prime(n)-1)/2, x) - S((prime(n)-3)/2, x). This is equivalent to  C(prime(n),x) = (-1)^((p(n)-1)/2)*S(prime(n)-1,I*sqrt(x-2)), with I^2 = -1.   Proof: The known identity S(n, x) - S(n-1, x) = (-1)^n*S(2*n, I*sqrt(x-2)) (from bisection). The degrees of the monic polynomials of both sides match, as do the known zeros. The row sums give 1, 3, 1, 0, 0, 0, -1, 0, 0, -1, 1, 0, -1, 0, -1, -2, 0, 0, -1, 0 ... The alternating row sums give 1, 1, -1, -2, 0, 2, -1, -2, 0, -1, 1, -2, -1, 2, -1, 0, 0, 2, -1, -2, ... For the reverse problem, the factorization of S polynomials into C polynomials see a Apr 12 2018 comment in A049310. - Wolfdieter Lang, Apr 12 2018 LINKS FORMULA The conversion is C(n, x) = sum(T(n, m)*S(m, x), m = 0..delta(n)), that is   T(n, m) = [S(m, x)] C(n, x), n >= 0, m = 0, ..., delta(n), with C(0, x) := 1, delta(0) = 0 and delta(n) = A055034(n), n >= 1. For the C and S polynomials see A187360 and A049310, respectively. For  n >= 2: T(prime(n), (prime(n) -1)/2) = +1, T(prime(n), (prime(n) -3)/2) = -1 and T(prime(n), m) = 0 otherwise. EXAMPLE The array T(n, m) begins: n\m   0  1  2  3  4  5  6 ... 0:    1 1:    2  1 2:    0  1 3:   -1  1 4:   -1  0  1 5:    0 -1  1 6:   -2  0  1 7:    0  0 -1  1 8:    0  0 -1  0  1 9:   -1 -1  0  1 10:   2  0 -2  0  1 11:   0  0  0  0 -1  1 12:  -1  0 -1  0  1 13:   0  0  0  0  0 -1  1 14:  -2  0  2  0 -2  0  1 15:  -1 -2 -1  1  1 ... n=0: C(0, x) = 1 = 1*S(0, x), n=1: C(1, x) = 2 + x = 2*S(0, x) + 1*S(1, x), n=2: C(2, x) = x = 0*S(0, x) + 1*S(1, x), n=3: C(3, x) = -1 + x = -1*S(0, x) + 1*S(1, x), n=4: C(4, x) = -2 + x^2 = -1*S(0, x) + 0 + 1*S(2, x) = -1 + (-1 + x^2), ... CROSSREFS Cf. A187360, A055034, A049310. Sequence in context: A261887 A037871 A037853 * A291954 A106799 A212210 Adjacent sequences:  A255234 A255235 A255236 * A255238 A255239 A255240 KEYWORD sign,easy,tabf AUTHOR Ahmet Zahid KÜÇÜK and Wolfdieter Lang, Mar 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 17 18:14 EST 2020. Contains 332005 sequences. (Running on oeis4.)