

A255199


Numbers n such that mu(n) = mu(phi(n)) where mu(k) is the Möbius function and phi(k) is Euler's totient function.


1



1, 3, 8, 12, 14, 16, 20, 22, 24, 25, 27, 28, 31, 32, 36, 40, 43, 44, 45, 46, 48, 50, 52, 54, 56, 60, 63, 64, 67, 68, 71, 72, 75, 76, 79, 80, 81, 84, 88, 90, 92, 94, 96, 99, 100, 103, 104, 108, 112, 116, 117, 118, 120, 124, 125, 126, 128, 131, 132, 135, 136, 139
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

If n and phi(n) are both not squarefree then n is in the list.
A prime p is in the list if p  1 is squarefree and bigomega(p  1) = A001222(p  1) is odd.


LINKS

Table of n, a(n) for n=1..62.


EXAMPLE

8 is in the list since mu(8) = 0 and mu(phi(8)) = mu(4) = 0.
7 is not in the list since mu(7) = 1 and mu(phi(7)) = mu(6) = 1.


MATHEMATICA

Select[Range[200], MoebiusMu[#] == MoebiusMu[EulerPhi[#]] &] (* Alonso del Arte, Feb 16 2015 *)


PROG

(Sage)
[n for n in [1..1000] if moebius(n)==moebius(euler_phi(n))]
(PARI) for(n=1, 140, if(moebius(n) == moebius(eulerphi(n)), print1(n, ", "))) \\ Indranil Ghosh, Mar 11 2017


CROSSREFS

Cf. A000010, A008683, A033631, A013929.
Sequence in context: A288865 A331069 A161517 * A280239 A310284 A296368
Adjacent sequences: A255196 A255197 A255198 * A255200 A255201 A255202


KEYWORD

nonn


AUTHOR

Tom Edgar, Feb 16 2015


STATUS

approved



