login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255175 Expansion of phi(-x) / (1 - x)^2 in powers of x where phi() is a Ramanujan theta function. 1

%I

%S 1,0,-1,-2,-1,0,1,2,3,2,1,0,-1,-2,-3,-4,-3,-2,-1,0,1,2,3,4,5,4,3,2,1,

%T 0,-1,-2,-3,-4,-5,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7,6,5,4,3,2,1,0,-1,

%U -2,-3,-4,-5,-6,-7,-8,-7,-6,-5,-4,-3,-2,-1,0,1,2,3

%N Expansion of phi(-x) / (1 - x)^2 in powers of x where phi() is a Ramanujan theta function.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A255175/b255175.txt">Table of n, a(n) for n = 0..1000</a>

%H M. Somos, <a href="http://somos.crg4.com/multiq.html">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F G.f.: Product_{k>0} (1 - x^(2*k)) * (1 - x^(2*k+1))^2.

%F A053615(n) = abs(A196199(n)) = abs(a(n-1)).

%F Euler transform of -A134451.

%F a(n) = Sum_{i=0..n}( (-1)^(floor(sqrt(i))) ). - _John M. Campbell_, Dec 22 2016

%e G.f. = 1 - x^2 - 2*x^3 - x^4 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + x^10 - x^12 + ...

%t a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] / (1 - x)^2, {x, 0, n}];

%t a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^(Mod[k, 2] + 1), {k, 2, n}], {x, 0, n}];

%t a[ n_] := If[ n < 0, 0, With[{m = Floor[ Sqrt[ n + 1]]}, (-1)^m (n + 1 - m - m^2)]];

%t Table[Sum[(-1)^(Floor[Sqrt[i]]), {i,0,n}], {n,0,50}] (* _G. C. Greubel_, Dec 22 2016 *)

%o (PARI) {a(n) = my(m); if( n<0, 0, m = sqrtint(n + 1); (-1)^m * (n + 1 - m - m^2))};

%o (PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=2, n, (1 - x^k)^(k%2+1), 1 + x * O(x^n)), n))};

%Y Cf. A053615, A134451, A196199.

%K sign

%O 0,4

%A _Michael Somos_, Feb 16 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 04:59 EDT 2019. Contains 323508 sequences. (Running on oeis4.)