login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255175 Expansion of phi(-x) / (1 - x)^2 in powers of x where phi() is a Ramanujan theta function. 1
1, 0, -1, -2, -1, 0, 1, 2, 3, 2, 1, 0, -1, -2, -3, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6, -7, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

M. Somos, Introduction to Ramanujan theta functions

Eric Weisstein's World of Mathematics, Ramanujan Theta Functions

FORMULA

G.f.: Product_{k>0} (1 - x^(2*k)) * (1 - x^(2*k+1))^2.

A053615(n) = abs(A196199(n)) = abs(a(n-1)).

Euler transform of -A134451.

a(n) = Sum_{i=0..n}( (-1)^(floor(sqrt(i))) ). - John M. Campbell, Dec 22 2016

EXAMPLE

G.f. = 1 - x^2 - 2*x^3 - x^4 + x^6 + 2*x^7 + 3*x^8 + 2*x^9 + x^10 - x^12 + ...

MATHEMATICA

a[ n_] := SeriesCoefficient[ EllipticTheta[ 4, 0, x] / (1 - x)^2, {x, 0, n}];

a[ n_] := SeriesCoefficient[ Product[ (1 - x^k)^(Mod[k, 2] + 1), {k, 2, n}], {x, 0, n}];

a[ n_] := If[ n < 0, 0, With[{m = Floor[ Sqrt[ n + 1]]}, (-1)^m (n + 1 - m - m^2)]];

Table[Sum[(-1)^(Floor[Sqrt[i]]), {i, 0, n}], {n, 0, 50}] (* G. C. Greubel, Dec 22 2016 *)

PROG

(PARI) {a(n) = my(m); if( n<0, 0, m = sqrtint(n + 1); (-1)^m * (n + 1 - m - m^2))};

(PARI) {a(n) = if( n<0, 0, polcoeff( prod(k=2, n, (1 - x^k)^(k%2+1), 1 + x * O(x^n)), n))};

CROSSREFS

Cf. A053615, A134451, A196199.

Sequence in context: A106509 A324692 A228110 * A196199 A053615 A002819

Adjacent sequences:  A255172 A255173 A255174 * A255176 A255177 A255178

KEYWORD

sign

AUTHOR

Michael Somos, Feb 16 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 04:00 EDT 2019. Contains 322406 sequences. (Running on oeis4.)