login
A255173
Numbers n such that 1+prime(n) and 1+prime(n+1) are the product of the same number of primes.
1
2, 4, 7, 13, 16, 23, 25, 29, 34, 35, 56, 57, 60, 62, 66, 67, 69, 79, 90, 93, 97, 102, 103, 104, 107, 114, 121, 132, 136, 148, 159, 161, 187, 188, 193, 197, 208, 209, 212, 213, 224, 234, 243, 244, 248, 266, 276, 278, 313, 320, 325, 327, 331, 337, 338, 341, 343, 351
OFFSET
1,1
COMMENTS
Number of primes counted with multiplicity. - Harvey P. Dale, Sep 05 2021
EXAMPLE
2 is in the list since 1 + prime(2) = 4 and 1 + prime(3) = 6 are both products of 2 primes.
4 is in the list since 1 + prime(4) = 8 and 1 + prime(5) = 12 are both products of 3 primes.
MATHEMATICA
Reap[Do[If[PrimeOmega[1 + Prime[n + 1]] == PrimeOmega[1 + Prime[n]], Sow[n]], {n, 200}]][[2, 1]]
SequencePosition[Table[PrimeOmega[Prime[n]+1], {n, 400}], {x_, x_}][[All, 1]] (* Harvey P. Dale, Sep 05 2021 *)
CROSSREFS
Sequence in context: A018414 A002152 A163522 * A002466 A162842 A164901
KEYWORD
nonn
AUTHOR
Zak Seidov, Feb 15 2015
STATUS
approved