login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255135 Dimensions where the volume of an L^p unit ball is maximized. 0
1, 5, 16, 41, 102, 242, 558, 1263, 2817, 6214, 13583, 29471, 63548, 136305, 291019, 618849, 1311314, 2769847, 5834119, 12257072, 25691785, 53738815, 112188059, 233796875, 486435094, 1010552580, 2096469429, 4343666482 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The volume of an n-dimensional L^p-ball of radius R is vol(R, p, n) = ((2^n)*(gamma((1/p)+1))^n /gamma((n/p)+1)*R^n for all real p > 0. For the Hilbert space L^2 we recover the familiar Euclidean volume of a unit n-ball (Pi^(n/2))/gamma((n/2)+1) which attains a maximum value at dimension n=5. The present sequence describes the same phenomenon for positive integer values of p.
From Robert L. Diersing, May 26 2020: (Start)
We can find very tight bounds for a(n):
define c := 2*gamma(1 + 1/p), then
floor(p*(c^p - 1/2) - 1/2) <= a(n) <= ceiling(p*(c^p - 1/2)).
First we treat V(n, p, 1) as a real-valued smooth function w.r.t. n, then we can maximize it. Since log(x) is an increasing function, the critical points of log(V(n, p)) will be the same as the critical points for V(n, p).
(d/dn)log(V(n, p)) = log(c) - 1/(p(digamma((n+p)/p))).
(d^2/dn^2)log(V(n, p)) = -polygamma(1, (n+p)/p))/p^2 < 0 for all n > 0, p > 0.
This is because polygamma(1, x) = Sum_{k>=1} 1/(x + k)^2 > 0 for all x > 0.
Therefore (d/dx)V(n, p) is a decreasing function w.r.t. n, which means there is only one local extremum. We can bound that local extremum similar to the way that we find bounds for the case where p=2 and the radius varies: see Wikipedia link.
Let's call this extremum n_.
dV/dn = log(c) - 1/(p*(digamma((n_+p)/p))) = 0;
p*log(c) = digamma((n_ + p) / p);
p*(inverse_digamma(plog(c)) - 1) = n_.
We can see from [2] that
log(y - 1/2) < digammma(y) < log(y + e^-m - 1),
where m is the Euler-Mascheroni constant.
Thus
log((n_+ p)/p - 1/2) < p*log(c) < log((n_ + p)/p + e^-m - 1);
c^p - e^-m + 1 < (n_ + p)/p < c^p + 1/2;
p*(c^p - e^-m) < n_ < p*(c^p - 1/2).
We can now improve on these bounds; define:
n` = p*(c^p - 1/2).
We can prove
n` - n_ < 1/2;
p*(c^p - 1/2 - inverse_digamma(p*log(c))) < p/c^p < 1/2;
c^p + 1/2 - 1/c^p < inverse_digamma(log(c^p)), say x := c^p;
x + 1/2 - 1/x < inverse_digamma(log(x));
digamma(x + 1/2 - 1/x) < log(x)
(inverse_digamma is an increasing function).
We see from [1] that digamma(1/log(1 + 1/x)) < log(x), therefore we only need to show
digamma(x + 1/2 - 1/x) < digamma(1/log(1 + 1/x)),
and since inverse_digamma is an increasing function, it suffices to show
x + 1/2 - 1/x < 1/log(1 + 1/x),
which is true for x > 0, and can be seen from an inequality solver such as Wolfram Alpha: https://www.wolframalpha.com/input/?i=x+%2B+%C2%BD+-+1%2Fx+%3C+1%2Flog%281+%2B+1%2Fx%29.
thus
n` - 1/2 < n_ < n`.
Now we have to confirm that n_ is the global maximum by checking the boundaries.
V(p, 0) = c^p < n_;
Limit_{n->oo} V(p, n) = lim_{n->oo} (2*sqrt(2*Pi/p))^n / (sqrt(2*Pi*n/p) n^n) = 0 < n_.
Therefore n_ is the global maximum, and thus we can solve for a(n).
floor(n` - 1/2) <= a(n) <= ceiling(n`).
So to find a(n) we only need to iterate over at most three values. (End)
LINKS
Necdet Batir, Inequalities for the Inverses of the Polygamma Functions, arXiv:1705.06547 [math.CA], 2017.
N. Elezovic, C. Giordano and J. Pecaric, The best bounds in Gautschi's inequality, Math. Inequal. Appl. 3 (2000), 239-252.
FORMULA
From Robert L. Diersing, May 26 2020: (Start)
Define c = 2*gamma(1 + 1/p), and n` = p*(c^p - 1/2)
for x in [floor(n` - 1/2), floor(n` + 1/2), floor(n` + 3/2)]
a(n) = the value x that gives the largest volume. (End)
EXAMPLE
a(2) = 5 because the sequence vol(R=1, p=2, n) increases monotonically up to n=5 and then decreases monotonically.
The approximate values for vol(1,p,a(p)) are 2, 5.263789015, 50.05958637, 5970.510613, p = 1..4. - Wolfdieter Lang, Mar 20 2015
MATHEMATICA
f[p_] = Round[FindArgMax[((2^n)*(Gamma[1+(1/p)])^n)/Gamma[1+(n/p)], n]]
CROSSREFS
Sequence in context: A014175 A097810 A187004 * A055796 A002662 A143962
KEYWORD
nonn
AUTHOR
Dimitris Cardaris, Feb 14 2015
EXTENSIONS
Edited by Wolfdieter Lang, Mar 20 2015
More terms from Robert L. Diersing, May 26 2020
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 25 03:15 EDT 2024. Contains 371964 sequences. (Running on oeis4.)