login
A255110
Number of length n+3 0..2 arrays with at most one downstep in every n consecutive neighbor pairs.
1
81, 216, 441, 789, 1302, 2032, 3042, 4407, 6215, 8568, 11583, 15393, 20148, 26016, 33184, 41859, 52269, 64664, 79317, 96525, 116610, 139920, 166830, 197743, 233091, 273336, 318971, 370521, 428544, 493632, 566412, 647547, 737737, 837720, 948273
OFFSET
1,1
COMMENTS
Row 3 of A255107.
LINKS
FORMULA
Empirical: a(n) = (1/120)*n^5 + (1/4)*n^4 + (59/24)*n^3 + (93/4)*n^2 + (1321/30)*n + 11.
Empirical g.f.: x*(81 - 270*x + 360*x^2 - 237*x^3 + 78*x^4 - 11*x^5) / (1 - x)^6. - Colin Barker, Jan 24 2018
EXAMPLE
Some solutions for n=4:
1 0 2 0 2 0 2 0 2 0 2 0 1 0 0 0
0 2 1 1 0 0 2 2 0 0 0 2 1 0 1 0
0 0 1 1 0 0 2 1 0 0 0 1 2 0 0 0
0 0 1 1 1 0 2 2 1 0 1 1 0 0 0 1
1 1 1 2 1 0 0 2 1 0 1 2 2 1 0 2
1 2 0 0 2 1 0 2 1 0 0 2 2 2 0 2
1 1 2 1 2 2 2 1 2 0 2 1 2 2 0 0
CROSSREFS
Cf. A255107.
Sequence in context: A236728 A236877 A236721 * A062532 A075730 A184068
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 14 2015
STATUS
approved