%I #15 Jun 04 2023 01:41:41
%S 1,1,9,0,0,3,8,6,8,1,9,8,9,7,7,6,7,5,3,3,2,1,9,0,8,6,7,5,1,4,2,0,7,6,
%T 9,4,4,9,9,1,1,8,0,6,0,7,3,5,7,4,9,8,2,6,4,4,0,8,9,7,2,2,3,7,3,0,3,7,
%U 3,6,1,7,6,5,5,3,1,1,3,7,1,4,4,5,4,3,1,9,8,1,3,8,3,9,6,2,3,4,0,8,3,3,9,1,6
%N Decimal expansion of the mean reciprocal Euclidean distance from a point in a unit cube to a given vertex of the cube (named B_3(-1) in Bailey's paper).
%H D. H. Bailey, J. M. Borwein and R. E. Crandall, <a href="https://doi.org/10.1016/j.cam.2006.06.010">Box Integrals</a>, J. Comp. Appl. Math., Vol. 206, No. 1 (2007), pp. 196-208.
%H D. H. Bailey, J. M. Borwein, and R. E. Crandall, <a href="http://dx.doi.org/10.1090/S0025-5718-10-02338-0">Advances in the theory of box integrals</a>, Math. Comp. 79 (271) (2010) 1839-1866, Table 2.
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/BoxIntegral.html">Box Integral</a>.
%F Equals B_3(-1) = (3/2)*log(2 + sqrt(3)) - Pi/4.
%F Equals log(7 + 4*sqrt(3)) - Pi/4 - arcsinh(1/sqrt(2)).
%e 1.1900386819897767533219086751420769449911806073574982644...
%t RealDigits[(3/2)*Log[2 + Sqrt[3]] - Pi/4, 10, 105] // First
%Y Cf. A130590, A244920, A244921.
%K nonn,cons,easy
%O 1,3
%A _Jean-François Alcover_, Feb 11 2015
%E Name corrected by _Amiram Eldar_, Jun 04 2023