The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254963 a(n) = n*(11*n + 3)/2. 15
 0, 7, 25, 54, 94, 145, 207, 280, 364, 459, 565, 682, 810, 949, 1099, 1260, 1432, 1615, 1809, 2014, 2230, 2457, 2695, 2944, 3204, 3475, 3757, 4050, 4354, 4669, 4995, 5332, 5680, 6039, 6409, 6790, 7182, 7585, 7999, 8424, 8860, 9307, 9765, 10234, 10714, 11205 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This sequence provides the first differences of A254407 and the partial sums of A017473. Also: a(n) - n         = A022269(n); a(n) + n         = n*(11*n+5)/2: 0, 8, 27, 57, 98, 150, 213, 287, ...; a(n) - 2*n       = A022268(n); a(n) + 2*n       = n*(11*n+7)/2: 0, 9, 29, 60, 102, 155, 219, 294, ...; a(n) - 3*n       = n*(11*n-3)/2: 0, 4, 19, 45, 82, 130, 189, 259, ...; a(n) + 3*n       = A211013(n); a(n) - 4*n       = A226492(n); a(n) + 4*n       = A152740(n); a(n) - 5*n       = A180223(n); a(n) + 5*n       = n*(11*n+13)/2: 0, 12, 35, 69, 114, 170, 237, 315, ...; a(n) - 6*n       = A051865(n); a(n) + 6*n       = n*(11*n+15)/2: 0, 13, 37, 72, 118, 175, 243, 322, ...; a(n) - 7*n       = A152740(n-1) with A152740(-1) = 0; a(n) + 7*n       = n*(11*n+17)/2: 0, 14, 39, 75, 122, 180, 249, 329, ...; a(n) - n*(n-1)/2 = A168668(n); a(n) + n*(n-1)/2 = A049453(n); a(n) - n*(n+1)/2 = A202803(n); a(n) + n*(n+1)/2 = A033580(n). LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). FORMULA G.f.: x*(7 + 4*x)/(1 - x)^3. MATHEMATICA Table[n (11 n + 3)/2, {n, 0, 50}] LinearRecurrence[{3, -3, 1}, {0, 7, 25}, 50] (* Harvey P. Dale, Mar 25 2018 *) PROG (PARI) vector(50, n, n--; n*(11*n+3)/2) (Sage) [n*(11*n+3)/2 for n in (0..50)] (MAGMA) [n*(11*n+3)/2: n in [0..50]]; (Maxima) makelist(n*(11*n+3)/2, n, 0, 50); CROSSREFS Cf. A008729 and A218530 (seventh column); A017473, A254407. Cf. similar sequences of the type 4*n^2 + k*n*(n+1)/2: A055999 (k=-7, n>6), A028552 (k=-6, n>2), A095794 (k=-5, n>1), A046092 (k=-4, n>0), A000566 (k=-3), A049450 (k=-2), A022264 (k=-1), A016742 (k=0), A022267 (k=1), A202803 (k=2), this sequence (k=3), A033580 (k=4). Cf. A069125: (2*n+1)^2 + 3*n*(n+1)/2; A147875: n^2 + 3*n*(n+1)/2. Sequence in context: A309901 A094672 A179436 * A304075 A227776 A155286 Adjacent sequences:  A254960 A254961 A254962 * A254964 A254965 A254966 KEYWORD nonn,easy AUTHOR Bruno Berselli, Feb 11 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 06:59 EDT 2021. Contains 343125 sequences. (Running on oeis4.)