

A254934


Fundamental positive solution x = x1(n) of the first class of the Pell equation x^2  2*y^2 = A007519(n), n>=1 (primes congruent to 1 mod 8).


6



1, 3, 5, 3, 1, 7, 5, 7, 3, 1, 9, 13, 5, 1, 15, 7, 13, 17, 1, 11, 19, 3, 1, 17, 11, 21, 9, 7, 11, 17, 21, 5, 1, 23, 11, 27, 9, 7, 5, 3, 19, 11, 23, 27, 7, 31, 1, 13, 25, 19
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For the corresponding term y1(n) see A254935(n).
For the positive fundamental proper (sometimes called primitive) solutions x2(n) and y2(n) of the second class of this (generalized) Pell equation see A254936(n) and A254937(n).
The present solutions of this first class are the smallest positive ones.
See the Nagell reference Theorem 111, p. 210, for the proof of the existence of solutions (the discriminant of this binary quadratic form is +8 hence it is an indefinite form with an infinitude of solutions if there exists at least one).
See the Nagell reference Theorem 110, p. 208, for the proof that there are only two classes of solutions for this Pell equation, because the equation is solvable and each prime from A007519 does not divide 4.
The present fundamental solutions are found according to the Nagell reference Theorem 108a, p. 206207, adapted to the case at hand, by scanning the following two inequalities for solutions x1(n) = 2*X1(n) + 1 and y1(n) = 2*Y1(n) + 1 (because even y is out in this Pell equation). The intervals to be scanned are identical for X1(n) and Y1(n), namely [0, floor((sqrt(p(n)  1)/2)] with p(n) = A007519(n).
The general positive proper solutions are for both classes obtained by applying positive powers of the matrix M = [[3,4],[2,3]] on the fundamental positive column vectors (x(n),y(n))^T. The nth power M^n = S(n1, 6)*M  S(n2, 6) 1_2 , where 1_2 is the 2 X 2 identity matrix and S(n, 6), with S(2, 6) = 1 and S(1, 6) = 0 is the Chebyshev Spolynomial evaluated at x = 6, given in A001109(n).
The least positive x solutions (that is the ones of the first class) for the primes +1 and 1 (mod 8) together (including prime 2) are given in A255235.


REFERENCES

T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, New York, 1964.


LINKS

Table of n, a(n) for n=1..50.


FORMULA

a(n)^2  2*A254935(n)^2 = A007519(n), n >=1, gives the smallest positive (proper) solution of this (generalized) Pell equation.


EXAMPLE

The first pairs [x1(n), y1(n)] of the fundamental positive solutions of this first class are (the prime A007519(n) is listed as first entry):
[17, [1, 3]], [41, [3, 5]], [73, [5, 7]],
[89, [3, 7]], [97, [1, 7]], [113, [7, 9]],
[137, [5, 9]], [193, [7, 11]], [233, [3, 11]],
[241, [1, 11]], [257, [9, 13]], [281, [13, 15]],
[313, [5, 13]], [337, [1, 13]], [353, [15, 17]],
[401, [7, 15]], [409, [13, 17]], [433, [17, 19]],
[449, [1, 15]], [457, [11, 17]], [521, [19, 21]],
[569, [3, 17]], [577, [1, 17]], [593, [17, 21]],
[601, [11, 19]], [617, [21, 23]], [641, [9, 19]],
[673, [7, 19]], [761, [11, 21]], [769, [17, 23]],
...
n=1: 1^2  2*3^2 = 1  18 = 17, ...


CROSSREFS

Cf. A007519, A254935, A254936, A254937, A254938, A255232, A255235, A254760.
Sequence in context: A173454 A023505 A196997 * A021743 A057023 A245509
Adjacent sequences: A254931 A254932 A254933 * A254935 A254936 A254937


KEYWORD

nonn,easy


AUTHOR

Wolfdieter Lang, Feb 18 2015


STATUS

approved



