

A254925


The slowest increasing sequence of primes such that no three terms sum up to a prime number.


1



3, 5, 7, 83, 317, 383, 2111, 2423, 3797, 8117, 12143, 18959, 24077, 33311, 89561, 142979, 161309, 191339, 218531, 234629, 278981, 297263, 516911, 731957, 746777, 882029, 908627, 953789, 1245551, 1279361, 1790339, 2550059, 2638667
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Start with s={3,5,7}. Then a(n) is the least prime > a(n1) such that no three terms sum up to a prime number.


LINKS

Zak Seidov, Table of n, a(n) for n = 1..104


MATHEMATICA

s = {3, 5, 7}; bs = {8, 10, 12}; p = 7; Do[Label[np]; p = NextPrime[p];
Do[If[PrimeQ[p + bs[[k]]], Goto[np]], {k, Length[bs]}]; AppendTo[s, p]; bs = Join[bs, s + p]; Print[p], {100}]


CROSSREFS

Sequence in context: A056145 A119939 A306573 * A153138 A201270 A160360
Adjacent sequences: A254922 A254923 A254924 * A254926 A254927 A254928


KEYWORD

nonn


AUTHOR

Zak Seidov, Feb 10 2015


STATUS

approved



