login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254884 a(n) = Fibonacci(2*n) + ((-1)^n-1)*Fibonacci(n). 3
0, -1, 3, 4, 21, 45, 144, 351, 987, 2516, 6765, 17533, 46368, 120927, 317811, 830820, 2178309, 5699693, 14930352, 39079807, 102334155, 267892404, 701408733, 1836254589, 4807526976, 12586118975, 32951280099, 86267178436, 225851433717, 591285701421, 1548008755920 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..30.

Index entries for linear recurrences with constant coefficients, signature (3, 2, -9, 2, 3, -1).

FORMULA

Let phi = (1+sqrt(5))/2, p(n) = phi^n - (-phi)^(-n) and FL(n) = 1 + (p(n-1) + p(n+1) + p(2*n-1)) / sqrt(5).

a(n) = FL(-n) - FL(n). By this definition a(n) is a doubly infinite sequence.

a(n) = -a(-n) for all n in Z.

a(n) = A006172(n) - A005522(n).

a(2*n) = A033888(n).

G.f.: x/(x^2-3*x+1) + x/(x^2-x-1) + x/(x^2+x-1).

a(n) = 4*a(n-1) - a(n-2) - 11*a(n-3) + 11*a(n-4) + a(n-5) - 4*a(n-6) + a(n-7).

MAPLE

gf := x -> x/(x^2-3*x+1) + x/(x^2-x-1) + x/(x^2+x-1):

seq(coeff(series(gf(x), x, n+1), x, n), n=0..30);

MATHEMATICA

LinearRecurrence[{4, -1, -11, 11, 1, -4, 1}, {0, -1, 3, 4, 21, 45, 144}, 31]

LinearRecurrence[{3, 2, -9, 2, 3, -1}, {0, -1, 3, 4, 21, 45}, 31] (* Ray Chandler, Aug 03 2015 *)

PROG

(Sage)

A254884 = lambda n: fibonacci(2*n) + ((-1)^n-1)*fibonacci(n)

[A254884(n) for n in range(31)]

CROSSREFS

Cf. A000032, A000045, A005522, A006172, A022112, A033888.

Sequence in context: A308689 A032830 A225478 * A034475 A156173 A094632

Adjacent sequences:  A254881 A254882 A254883 * A254885 A254886 A254887

KEYWORD

sign,easy

AUTHOR

Peter Luschny, Mar 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 1 14:52 EDT 2020. Contains 333163 sequences. (Running on oeis4.)