

A254787


a(n)= least initial term of n consecutive primes {p(m),..,p(m+n1)} such that all numbers {1+p(m),..,1+p(m+n1)} are a product of the same number k primes, where p(m) is mth prime A000040(m).


1



2, 3, 139, 557, 3821, 53609, 179659, 7190917, 3599100, 16687573, 20394197, 101439558
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Corresponding values of m are: 1,2,34,102,530,5462,16309,488739,3599100,308495917,20394197,101439558
Corresponding values of k are: 1,2,4,4,5,4,5,4,5,4,5,5
A023514(i=m,..,m+n1) are of the same value.


LINKS

Table of n, a(n) for n=1..12.


EXAMPLE

a(2)=3, because {p(2),p(3)}={3,5}, and {4,6}={2^2,2*3}, k=2;
a(3)=139, because {p(34),p(35),p(36)}={139,149,151}, and {140,150,152}={2^2*5*7,2*3*5^2,2^3*19}, k=4.


CROSSREFS

Cf. A000040, A023514.
Sequence in context: A066908 A057738 A234999 * A042073 A124236 A115231
Adjacent sequences: A254784 A254785 A254786 * A254788 A254789 A254790


KEYWORD

nonn


AUTHOR

Zak Seidov, Feb 15 2015


STATUS

approved



