login
A254749
1-gonal pyramidal numbers.
2
1, 2, 2, 0, -5, -14, -28, -48, -75, -110, -154, -208, -273, -350, -440, -544, -663, -798, -950, -1120, -1309, -1518, -1748, -2000, -2275, -2574, -2898, -3248, -3625, -4030, -4464, -4928, -5423, -5950, -6510, -7104, -7733, -8398, -9100, -9840, -10619, -11438
OFFSET
1,2
COMMENTS
Not strictly pyramidal numbers, but the result of using the Wikipedia formula with r = 1.
Essentially the same as A129936 and A005586.
FORMULA
a(n) = (n*(4+3*n-n^2))/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: x*(1 - 2*x) / (x-1)^4.
a(n) = A005581(-n) = - A005586(n-4) = - A129936(n-2) for all n in Z. - Michael Somos, Jul 28 2015
EXAMPLE
G.f. = x + 2*x^2 + 2*x^3 - 5*x^5 - 14*x^6 - 28*x^7 - 48*x^8 - 75*x^9 + ...
MATHEMATICA
Table[(n*(4+3*n-n^2))/6, {n, 1, 60}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 2, 0}, 60] (* G. C. Greubel, Aug 03 2018 *)
PROG
(PARI) ppg(r, n) = (3*n^2+n^3*(r-2)-n*(r-5))/6
vector(100, n, ppg(1, n))
(Magma) [(n*(4+3*n-n^2))/6: n in [1..60]]; // G. C. Greubel, Aug 03 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Colin Barker, Feb 07 2015
STATUS
approved