login
A254731
Number of ON cells in the even-rule cellular automaton after n steps with the Moore neighborhood (8 neighbors), with minimal nontrivial symmetric initial state (0,0), (0,1), (1,0), and (1,1) ON.
1
4, 8, 24, 20, 32, 68, 48, 72, 116, 88, 104, 140, 188, 160, 284, 272, 268, 320, 372, 352, 496, 488, 524, 608, 556, 628, 692, 820, 764, 808, 864, 976, 1024, 920, 1032, 1228, 1188, 1256, 1408, 1496, 1488, 1564, 1584, 1712, 1752, 1708, 1888, 2148, 2040, 2100, 2308, 2392, 2544, 2480, 2760, 2752, 2764, 3064, 3020, 2976, 3516, 3440, 3560, 3580, 3804, 3816, 3916, 4236, 4492, 4340, 4516, 4512, 4984, 4764, 5004, 4880, 5116, 5716, 5540, 5560, 5564, 5840, 6200, 6368, 6280, 6668, 6880, 6908, 6960, 7600, 7388, 7396, 8028, 7832, 8332, 8152, 8268, 8928, 8708, 9144
OFFSET
0,1
COMMENTS
The rule turns a cell to ON at step n if an even, nonzero number of its eight neighbors were ON in the previous. For example, at n=2 the cell (0,0) is ON because the two neighbors (-1,0) and (0,-1) and no others were ON at the previous step.
It appears that whenever n is divisible by 3, there is a visible disjoint 2x2 square leading the automaton in each cardinal direction.
EXAMPLE
For n=3, the configuration includes the initial four ON cells plus four other 2 X 2 squares in each cardinal direction.
MATHEMATICA
m = 100; n = 2 m + 1;
A = Table[0, {p, 1, m}, {q, 1, n}, {z, 1, n}];
A[[1, m, m + 1]] = 1;
A[[1, m, m]] = 1;
A[[1, m + 1, m + 1]] = 1;
A[[1, m + 1, m]] = 1;
For[i = 2, i <= m, i++,
For[x = 2, x <= n - 1, x++,
For[y = 2, y <= n - 1, y++,
sum = A[[i - 1, x - 1, y - 1]] +
A[[i - 1, x, y - 1]] +
A[[i - 1, x + 1, y - 1]] +
A[[i - 1, x - 1, y]] +
A[[i - 1, x + 1, y]] +
A[[i - 1, x - 1, y + 1]] +
A[[i - 1, x, y + 1]] +
A[[i - 1, x + 1, y + 1]];
A[[i, x, y]] = If[sum > 0, 1 - Mod[sum, 2], 0];
]
]
];
Table[Plus @@ Plus @@ A[[i, All, All]], {i, 1, m}]
(* Kellen Myers, Feb 07 2015 *)
CROSSREFS
Cf. A160239.
Sequence in context: A083504 A277291 A362212 * A368903 A291548 A212019
KEYWORD
nonn
AUTHOR
Kellen Myers, Feb 06 2015
STATUS
approved