login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254730 Triangle read by rows: T(n,k) = A243758(n)/(A243758(k)*A243758(n-k)). 1
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 1, 1, 1, 6, 6, 6, 6, 1, 1, 1, 1, 1, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 6, 6, 6, 6, 1, 6, 6, 6 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,23

COMMENTS

These are the generalized binomial coefficients associated with A234959.

The exponent of T(n,k) is the number of 'carries' that occur when adding k and n-k in base 6 using the traditional addition algorithm.

If T(n,k) != 0 mod 6, then n dominates k in base 6.

LINKS

Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened

Tyler Ball, Tom Edgar, and Daniel Juda, Dominance Orders, Generalized Binomial Coefficients, and Kummer's Theorem, Mathematics Magazine, Vol. 87, No. 2, April 2014, pp. 135-143.

Tyler Ball and Daniel Juda, Dominance over N, Rose-Hulman Undergraduate Mathematics Journal, Vol. 13, No. 2, Fall 2013.

Tom Edgar and Michael Z. Spivey, Multiplicative functions, generalized binomial coefficients, and generalized Catalan numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.6.

FORMULA

T(n,k) = A243758(n)/(A243758(k)*A243758(n-k)).

T(n,k) = Product_{i=1..n} A234959(i)/(Product_{i=1..k} A234959(i)*Product_{i=1..n-k} A234959(i)).

T(n,k) = A234959(n)/n*(k/A234959(k)*T(n-1,k-1)+(n-k)/A234959(n-k)*T(n-1,k)).

EXAMPLE

The first six terms in A234959 are 1, 1, 1, 1, 1 and 6 and so T(4,2) = 1*1*1*1/((1*1)*(1*1))=1 and T(6,3) = 6*1*1*1*1*1/((1*1*1)*(1*1*1))=6.

The triangle begins:

1

1, 1

1, 1, 1

1, 1, 1, 1

1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1

1, 6, 6, 6, 6, 6, 1

1, 1, 6, 6, 6, 6, 1, 1

1, 1, 1, 6, 6, 6, 1, 1, 1

1, 1, 1, 1, 6, 6, 1, 1, 1, 1

1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

1, 6, 6, 6, 6, 6, 1, 6, 6, 6, 6, 6, 1

1, 1, 6, 6, 6, 6, 1, 1, 6, 6, 6, 6, 1, 1

1, 1, 1, 6, 6, 6, 1, 1, 1, 6, 6, 6, 1, 1, 1

1, 1, 1, 1, 6, 6, 1, 1, 1, 1, 6, 6, 1, 1, 1, 1

1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

PROG

(Sage)

P=[0]+[6^valuation(i, 6) for i in [1..100]]

[m for sublist in [[mul(P[1:n+1])/(mul(P[1:k+1])*mul(P[1:(n-k)+1])) for k in [0..n]] for n in [0..len(P)-1]] for m in sublist]

(Haskell)

import Data.List (inits)

a254730 n k = a254730_tabl !! n !! k

a254730_row n = a254730_tabl !! n

a254730_tabl = zipWith (map . div)

   a243758_list $ zipWith (zipWith (*)) xss $ map reverse xss

   where xss = tail $ inits a243758_list

-- Reinhard Zumkeller, Feb 09 2015

CROSSREFS

Cf. A234959, A243758, A242849, A082907, A254609.

Sequence in context: A144539 A090143 A173068 * A090611 A132726 A269348

Adjacent sequences:  A254727 A254728 A254729 * A254731 A254732 A254733

KEYWORD

nonn,tabl

AUTHOR

Tom Edgar, Feb 06 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 19:10 EDT 2019. Contains 324198 sequences. (Running on oeis4.)