%I #4 Feb 05 2015 21:01:06
%S 133,267,552,1140,2310,4542,9106,18498,37742,77010,156546,318427,
%T 649407,1326877,2713484,5550992,11360343,23266909,47691587,97820467,
%U 200754359,412222139,846895302,1740851986,3580251228,7366679989,15164514943
%N Number of length n+4 0..2 arrays with every five consecutive terms having the maximum of some two terms equal to the minimum of the remaining three terms
%C Column 2 of A254698
%H R. H. Hardin, <a href="/A254692/b254692.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) -3*a(n-2) +4*a(n-3) -6*a(n-4) +26*a(n-5) -43*a(n-6) +21*a(n-7) -55*a(n-8) +59*a(n-9) -217*a(n-10) +185*a(n-11) -38*a(n-12) +350*a(n-13) -150*a(n-14) +899*a(n-15) -152*a(n-16) +101*a(n-17) -1001*a(n-18) -108*a(n-19) -2159*a(n-20) -958*a(n-21) -492*a(n-22) +1151*a(n-23) +783*a(n-24) +3028*a(n-25) +2869*a(n-26) +1191*a(n-27) -124*a(n-28) -1084*a(n-29) -2384*a(n-30) -3108*a(n-31) -1346*a(n-32) -484*a(n-33) +650*a(n-34) +1038*a(n-35) +1603*a(n-36) +792*a(n-37) +200*a(n-38) -166*a(n-39) -262*a(n-40) -472*a(n-41) -236*a(n-42) +8*a(n-43) -64*a(n-44) +64*a(n-45) +64*a(n-46) +48*a(n-47) +32*a(n-49)
%e Some solutions for n=10
%e ..2....2....0....0....1....0....1....2....0....2....1....1....1....2....2....1
%e ..1....0....1....1....2....0....0....0....0....1....1....0....0....2....1....1
%e ..2....0....0....2....0....2....1....1....0....0....2....1....1....1....1....2
%e ..1....0....0....1....1....0....1....1....1....2....1....1....2....1....1....0
%e ..0....0....0....2....1....0....2....2....0....1....1....1....1....1....2....2
%e ..1....0....2....1....2....0....1....1....0....2....1....1....2....1....1....1
%e ..1....0....0....1....1....2....2....2....0....1....1....0....0....2....2....1
%e ..1....2....0....2....1....0....1....0....0....1....2....1....1....0....1....2
%e ..1....1....0....0....2....0....1....1....0....1....1....2....1....2....1....1
%e ..1....0....2....2....1....0....0....2....2....1....1....1....1....1....2....1
%e ..0....0....0....1....1....0....2....1....1....1....1....1....1....1....1....1
%e ..1....0....1....1....2....2....1....1....0....1....2....1....2....2....1....1
%e ..2....1....0....2....0....0....1....0....0....2....0....2....1....0....0....0
%e ..1....2....0....1....2....0....1....1....0....2....1....1....1....2....1....2
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 05 2015