login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254647 Fourth partial sums of eighth powers (A001016). 15
1, 260, 7595, 94360, 723534, 4037712, 17944290, 67127880, 219319815, 642251428, 1718012933, 4258676240, 9892043980, 21721707840, 45414150132, 90930820464, 175208925885, 326205634020, 588861675535, 1033717781096, 1769137540730, 2958360418000, 4842936861750, 7774492635000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

LINKS

Luciano Ancora, Table of n, a(n) for n = 1..1000

Luciano Ancora, Partial sums of m-th powers with Faulhaber polynomials

Luciano Ancora, Pascal’s triangle and recurrence relations  for partial sums of m-th powers

Index entries for linear recurrences with constant coefficients, signature (13,-78,286,-715,1287,-1716,1716,-1287,715,-286,78,-13,1).

FORMULA

G.f.: x*(1 +247*x +4293*x^2 +15619*x^3 +15619*x^4 +4293*x^5 +247*x^6 +x^7)/(1-x)^13.

a(n) = n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1 +4*n +n^2)*(21 -48*n +20*n^2 + 16*n^3 +2*n^4)/23760.

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + n^8.

EXAMPLE

The eighth powers:   1, 256, 6561, 65536, 390625, ... (A001016)

First partial sums:  1, 257, 6818, 72354, 462979, ... (A000542)

Second partial sums: 1, 258, 7076, 79430, 542409, ... (A253636)

Third partial sums:  1, 259, 7335, 86765, 629174, ... (A254642)

Fourth partial sums: 1, 260, 7595, 94360, 723534, ... (this sequence)

MAPLE

seq(binomial(n+4, 5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198, n=1..30); # G. C. Greubel, Aug 28 2019

MATHEMATICA

Table[n(1+n)(2+n)^2(3+n)(4+n)(1+4n+n^2)(21 -48n +20n^2 +16n^3 +2n^4 )/23760, {n, 20}] (* or *)

Accumulate[Accumulate[Accumulate[Accumulate[Range[20]^8]]]] (* or *)

CoefficientList[Series[(1 +247x +4293x^2 +15619x^3 +15619x^4 +4293x^5 + 247x^6 +x^7)/(1-x)^13, {x, 0, 19}], x]

PROG

(PARI) a(n)=n*(1+n)*(2+n)^2*(3+n)*(4+n)*(1+4*n+n^2)*(21-48*n+20*n^2 +16*n^3+2*n^4)/23760 \\ Charles R Greathouse IV, Sep 08 2015

(PARI) vector(30, n, m=n+2; binomial(m+2, 5)*m*(m^2-3)*(2*m^4-28*m^2 +101)/198)

(MAGMA) [Binomial(n+4, 5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198: n in [1..30]]; // G. C. Greubel, Aug 28 2019

(Sage) [binomial(n+4, 5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198 for n in (1..30)] # G. C. Greubel, Aug 28 2019

(GAP) List([1..30], n-> Binomial(n+4, 5)*(n+2)*((n+2)^2-3)*(2*(n+2)^4 -28*(n+2)^2 +101)/198); # G. C. Greubel, Aug 28 2019

CROSSREFS

Cf. A000542, A001016, A253636, A254642, A254644, A254645, A254646.

Sequence in context: A287923 A238029 A264254 * A168187 A067639 A264162

Adjacent sequences:  A254644 A254645 A254646 * A254648 A254649 A254650

KEYWORD

nonn,easy

AUTHOR

Luciano Ancora, Feb 05 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 15 04:04 EDT 2021. Contains 342974 sequences. (Running on oeis4.)