login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Numbers that cannot be represented as x*y + x + y, where x>=y>1.
10

%I #18 Oct 15 2024 04:28:25

%S 0,1,2,3,4,5,6,7,9,10,12,13,16,18,21,22,25,28,30,33,36,37,40,42,45,46,

%T 52,57,58,60,61,66,70,72,73,78,81,82,85,88,93,96,100,102,105,106,108,

%U 112,117,121,126,130,133,136,138,141,145,148,150,156,157,162,165,166,172

%N Numbers that cannot be represented as x*y + x + y, where x>=y>1.

%C 0, 7 and numbers n such that n+1 is either prime or twice a prime. - _Robert Israel_, Aug 05 2015

%p sort([0,7, op(select(t -> isprime(t+1), [$1..10^4])), op(select(t -> isprime((t+1)/2),[2*i+1$i=1..5*10^3]))]); # _Robert Israel_, Aug 05 2015

%t r[n_] := Reduce[x >= y > 1 && n == x y + x + y, {x, y}, Integers];

%t Reap[For[n = 0, n <= 200, n++, If[r[n] === False, Sow[n]]]][[2, 1]] (* _Jean-François Alcover_, Feb 28 2019 *)

%o (Python)

%o from sympy import primepi

%o def A254636(n):

%o def bisection(f,kmin=0,kmax=1):

%o while f(kmax) > kmax: kmax <<= 1

%o while kmax-kmin > 1:

%o kmid = kmax+kmin>>1

%o if f(kmid) <= kmid:

%o kmax = kmid

%o else:

%o kmin = kmid

%o return kmax

%o def f(x): return int(n-1+x-(x>=7)-primepi(x+1)-primepi(x+1>>1))

%o return bisection(f,n-1,n-1) # _Chai Wah Wu_, Oct 14 2024

%Y Cf. A091529 (appears to be essentially the same, except first few terms).

%Y Cf. A253975.

%K nonn

%O 1,3

%A _Alex Ratushnyak_, Feb 03 2015