This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254625 Integers n such that core(n), core(n+1), core(n+2) are smaller than n^(1/3) where core(n) is A007913(n), the squarefree part of n. 1
 48, 629693, 8388223, 9841094, 1728322595, 19503452898, 27558254932, 2399283556900 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Theorem 2 in Rouse & Yang link proves that this sequence is infinite. a(9) > 7*10^12. - Giovanni Resta, Jul 17 2015 LINKS Jeremy Rouse and Yilin Yang, Three consecutive almost squares, arXiv:1502.00605 [math.NT], 2015. EXAMPLE 48 is a term since core(48)=3, core(49)=1, core(50)=2, these 3 values being smaller than 48^(1/3). PROG (PARI) isok(n) = my(cb = sqrtnint(n, 3)); (core(n) <= cb) && (core(n+1) <= cb) && (core(n+2) <= cb); (PARI) /* This program is a little sloppy in testing more points than needed near the start and end, but adding extra code to avoid this case would add to complexity without greatly affecting runtime. */ list(lim, startAt=27)=my(c0, c1, c2); for(c=sqrtnint(startAt\1, 3), ceil(sqrtn(lim, 3)), my(n=c^3+1, lm=(c+1)^3); while(nc, n+=3; next); c1=core(n+1); if(c1>c, n+=2; next); c0=core(n); if(c0>c, n++; next); print1(n", "); n++)) \\ Charles R Greathouse IV, Jul 16 2015 (Python) from operator import mul from functools import reduce from sympy import factorint def A007913(n): ....return reduce(mul, [1]+[p for p, e in factorint(n).items() if e % 2]) A254625_list, n, c0, c1, c2 = [], 1, 1, 8, 27 for _ in range(10**6): ....if max(c0, c1, c2) < n: ........A254625_list.append(n) ....n += 1 ....c0, c1, c2 = c1, c2, A007913(n+2)**3 # Chai Wah Wu, Feb 08 2015 CROSSREFS Sequence in context: A079234 A051235 A282403 * A165643 A165047 A291865 Adjacent sequences:  A254622 A254623 A254624 * A254626 A254627 A254628 KEYWORD nonn,more AUTHOR Michel Marcus, Feb 03 2015 EXTENSIONS a(5)-a(7) from Charles R Greathouse IV, Jul 17 2015 a(8) from Giovanni Resta, Jul 17 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 13:29 EDT 2019. Contains 321330 sequences. (Running on oeis4.)