The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254605 The minimum absolute difference between k*m1 and m2 (m1
 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 2, 1, 0, 0, 1, 0, 1, 1, 3, 2, 1, 0, 0, 0, 1, 2, 0, 2, 3, 2, 1, 0, 0, 1, 1, 1, 1, 1, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 2, 4, 3, 2, 1, 0, 0, 1, 1, 1, 2, 1, 1, 3, 4 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,19 COMMENTS k is an integer that minimizes |k*m1-m2|. It is trivial that if j is the integer part of m2/m1, k is either j or j+1. Interestingly, suppose b is the smallest n such that a(n)=c; the sequence s(c)=b is then sequence A022267. LINKS Lei Zhou, Table of n, a(n) for n = 1..10000 EXAMPLE A075362(1)=1=1*1, 1-1=0, so a(1)=0; A075362(5)=6=2*3, 3-2=1, 2*2-3=1, so a(5)=1; A075362(19)=24=4*6, 6-4=2, 4*2-6=2, so a(19)=2. MATHEMATICA NumDiff[n1_, n2_] :=  Module[{c1 = n1, c2 = n2}, If[c1 < c2, c1 = c1 + c2; c2 = c1 - c2; c1 = c1 - c2];   k = Floor[c1/c2]; a1 = c1 - k*c2; If[a1 == 0, a2 = 0, a2 = (k + 1) c2 - c1]; Return[Min[a1, a2]]]; p1 = 1; p2 = 0; Table[p2++; If[p2 > p1, p1 = p2; p2 = 1];  NumDiff[p1, p2], {n, 1, 100}] CROSSREFS Cf. A075362, A022267. Sequence in context: A204770 A333382 A143379 * A335664 A269518 A219840 Adjacent sequences:  A254602 A254603 A254604 * A254606 A254607 A254608 KEYWORD nonn,easy AUTHOR Lei Zhou, Feb 02 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 17:36 EDT 2021. Contains 343156 sequences. (Running on oeis4.)