login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254605 The minimum absolute difference between k*m1 and m2 (m1<m2), where m1*m2 is the n-th term of A075362. 2
0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 1, 2, 1, 0, 0, 0, 1, 0, 2, 2, 1, 0, 0, 1, 0, 1, 1, 3, 2, 1, 0, 0, 0, 1, 2, 0, 2, 3, 2, 1, 0, 0, 1, 1, 1, 1, 1, 3, 3, 2, 1, 0, 0, 0, 0, 0, 2, 0, 2, 4, 3, 2, 1, 0, 0, 1, 1, 1, 2, 1, 1, 3, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,19

COMMENTS

k is an integer that minimizes |k*m1-m2|. It is trivial that if j is the integer part of m2/m1, k is either j or j+1.

Interestingly, suppose b is the smallest n such that a(n)=c; the sequence s(c)=b is then sequence A022267.

LINKS

Lei Zhou, Table of n, a(n) for n = 1..10000

EXAMPLE

A075362(1)=1=1*1, 1-1=0, so a(1)=0;

A075362(5)=6=2*3, 3-2=1, 2*2-3=1, so a(5)=1;

A075362(19)=24=4*6, 6-4=2, 4*2-6=2, so a(19)=2.

MATHEMATICA

NumDiff[n1_, n2_] :=  Module[{c1 = n1, c2 = n2}, If[c1 < c2, c1 = c1 + c2; c2 = c1 - c2; c1 = c1 - c2];

  k = Floor[c1/c2]; a1 = c1 - k*c2; If[a1 == 0, a2 = 0, a2 = (k + 1) c2 - c1]; Return[Min[a1, a2]]];

p1 = 1; p2 = 0; Table[p2++; If[p2 > p1, p1 = p2; p2 = 1];  NumDiff[p1, p2], {n, 1, 100}]

CROSSREFS

Cf. A075362, A022267.

Sequence in context: A225245 A204770 A143379 * A269518 A219840 A264893

Adjacent sequences:  A254602 A254603 A254604 * A254606 A254607 A254608

KEYWORD

nonn,easy

AUTHOR

Lei Zhou, Feb 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 28 07:07 EST 2020. Contains 331317 sequences. (Running on oeis4.)