login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254594 Expansion of 1 / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) in powers of x. 4
1, 0, 2, 1, 4, 2, 7, 4, 11, 7, 16, 11, 23, 16, 31, 23, 41, 31, 53, 41, 67, 53, 83, 67, 102, 83, 123, 102, 147, 123, 174, 147, 204, 174, 237, 204, 274, 237, 314, 274, 358, 314, 406, 358, 458, 406, 514, 458, 575, 514, 640, 575, 710, 640, 785, 710, 865, 785, 950 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Partitions of n into parts of size 3 and size 4 and two kinds of parts of size 2.

The number of quadruples of integers [x, u, v, w] which satisfy x > u > v > w >=0, n+5 = x+u, u+v >= x+w, and x+u+v+w is even.

Euler transform of length 4 sequence [ 0, 2, 1, 1].

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,2,1,0,-2,-2,0,1,2,0,-1).

FORMULA

G.f.: 1 / (1 - 2*x^2 - x^3 + 2*x^5 + 2*x^6 - x^8 - 2*x^9 + x^11).

a(n) = -a(-11-n) for all n in Z.

a(n+3) - a(n) = 0 if n even else floor((n+7)^2 / 16).

0 = a(n) - 2*a(n+2) - a(n+3) + 2*a(n+5) + 2*a(n+6) - a(n+8) - 2*a(n+9) + a(n+11) for all n in Z.

a(n) - a(n-2) = A005044(n+3) for all n in Z.

a(n) + a(n-1) = A001400(n) for all n in Z.

a(n) + a(n-2) = A165188(n+1) for all n in Z.

a(n) = A115264(n) - A115264(n-1) for all n in Z.

a(2*n) - a(2*n-6) = a(2*n+3) - a(2*n-3) = A002620(n+2) for all n in Z. - Michael Somos, Feb 11 2015

a(n) = (2*n^3+33*n^2+181*n+234+3*(3*n^2+33*n+86)*(-1)^n+84*(-1)^((2*n+1-(-1)^n)/4)-96*((1+(-1)^n)*floor(((2*n+9+(-1)^n-6*(-1)^((2*n+3+(-1)^n)/4))/24))+(1-(-1)^n)*floor(((2*n+5+(-1)^n-6*(-1)^((2*n-1+(-1)^n)/4))/24))))/576. - Luce ETIENNE, May 22 2015

EXAMPLE

G.f. = 1 + 2*x^2 + x^3 + 4*x^4 + 2*x^5 + 7*x^6 + 4*x^7 + 11*x^8 + 7*x^9 + ...

MATHEMATICA

a[ n_] := Quotient[ n^3 + If[ OddQ[n], 12 n^2 + 33 n + 54, 21 n^2 + 132 n + 288], 288];

a[ n_] := Module[{s = 1, m = n}, If[ n < 0, s = -1; m = -11 - n]; s SeriesCoefficient[ 1 / ((1 - x^2)^2 (1 - x^3) (1 - x^4)), {x, 0, m}]];

a[ n_] := Length @ FindInstance[ {x > u, u > v, v > w, w >= 0, x + u == n + 5, u + v >= x + w, x + u + v + w == 2 k}, {x, u, v, w, k}, Integers, 10^9];

CoefficientList[Series[1 / (1 - 2 x^2 - x^3 + 2 x^5 + 2 x^6 - x^8 - 2 x^9 + x^11), {x, 0, 60}], x] (* Vincenzo Librandi, Feb 03 2015 *)

PROG

(PARI) {a(n) = (n^3 + if(n%2, 12*n^2 + 33*n + 54, 21*n^2 + 132*n + 288)) \ 288};

(PARI) {a(n) = my(s=1); if( n<0, s=-1; n=-11-n); s * polcoeff( 1 / ((1 - x^2)^2 * (1 - x^3) * (1 - x^4)) + x * O(x^n), n)};

(MAGMA) I:=[1, 0, 2, 1, 4, 2, 7, 4, 11, 7, 16]; [n le 11 select I[n] else 2*Self(n-2)+Self(n-3)-2*Self(n-5)-2*Self(n-6)+Self(n-8)+2*Self(n-9)-Self(n-11): n in [1..60]]; // Vincenzo Librandi, Feb 03 2015

CROSSREFS

Cf. A001400, A002620, A005044, A115264, A165188.

Cf. A241526, A000601, A181120.

Sequence in context: A276055 A252866 A008796 * A280948 A325345 A079966

Adjacent sequences:  A254591 A254592 A254593 * A254595 A254596 A254597

KEYWORD

nonn,easy

AUTHOR

Michael Somos, Feb 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 20:44 EST 2019. Contains 329778 sequences. (Running on oeis4.)