login
Primes p such that phi(p-2) divides p-1 where phi is Euler's totient function (A000010).
2

%I #15 Feb 02 2024 09:01:41

%S 3,5,17,257,65537,83623937

%N Primes p such that phi(p-2) divides p-1 where phi is Euler's totient function (A000010).

%C The first 5 known Fermat primes from A019434 are terms.

%C Conjecture: also primes p such that 2*phi(p-2) = p-1 (i.e., primes in A232720).

%C a(7) > 10^25. - _Max Alekseyev_, Feb 02 2024

%o (Magma) [n: n in [3..10000000] | IsPrime(n) and (n-1) mod EulerPhi(n-2) eq 0]

%Y Subsequence of A249541.

%Y Cf. A000010, A019434, A050474, A203966, A232720.

%K nonn,more

%O 1,1

%A _Jaroslav Krizek_, Feb 25 2015