This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254575 Triangle T(n,k) in which the n-th row encodes how to hang a picture by wrapping rope around n nails using a polynomial number of twists, such that removing one nail causes the picture to fall; n>=1, 1<=k<=A073121(n). 2
 1, 1, 2, -1, -2, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 1, 2, -1, -2, 3, 4, -3, -4, 2, 1, -2, -1, 4, 3, -4, -3, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 4, 5, -4, -5, 3, 1, 2, -1, -2, -3, 2, 1, -2, -1, 5, 4, -5, -4, 1, 2, -1, -2, 3, 2, 1, -2, -1, -3, 4, 5, -4, -5, 6, 5 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS In step k the rope has to be wrapped around nail |T(n,k)| clockwise if T(n,k)>0 and counterclockwise if T(n,k)<0. LINKS Alois P. Heinz, Rows n = 1..30, flattened E. D. Demaine, M. L. Demaine, Y. N. Minsky, J. S. B. Mitchell, R. L. Rivest, M. Patrascu, Picture-Hanging Puzzles, arXiv:1203.3602 [cs.DS], 2012-2014. EXAMPLE Triangle T(n,k) begins:   1;   1, 2, -1, -2;   1, 2, -1, -2, 3, 2,  1, -2, -1, -3;   1, 2, -1, -2, 3, 4, -3, -4,  2,  1, -2, -1, 4, 3, -4, -3; MAPLE r:= s-> seq(-s[-k], k=1..nops(s)): T:= proc(n) option remember; local m; m:= iquo(n+1, 2);       `if`(n=1, 1, ((x, y)-> [x[], y[], r(x), r(y)][])(        [T(m)], map(h-> h+sign(h)*m, [T(n-m)])))     end: seq(T(n), n=1..7); MATHEMATICA r[s_List] := -Reverse[s]; T[1] = {1}; T[n_] := T[n] = Module[{ m = Quotient[n+1, 2]}, Function[{x, y}, {x, y, r[x], r[y]} // Flatten][T[m], Function[h, h + Sign[h]*m] /@ T[n - m]]]; Table[T[n], {n, 1, 7}] // Flatten (* Jean-François Alcover, Nov 06 2017, after Alois P. Heinz *) CROSSREFS Cf. A073121. Sequence in context: A304536 A272863 A112632 * A275344 A206826 A175835 Adjacent sequences:  A254572 A254573 A254574 * A254576 A254577 A254578 KEYWORD sign,tabf,look AUTHOR Alois P. Heinz, Feb 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 21 06:40 EST 2019. Contains 320371 sequences. (Running on oeis4.)