login
A254539
T(n,k)=Number of length n 1..(k+2) arrays with no leading partial sum equal to a prime
14
1, 2, 1, 2, 3, 1, 3, 5, 8, 2, 3, 10, 15, 20, 4, 4, 11, 40, 45, 50, 6, 5, 20, 49, 160, 135, 126, 11, 6, 28, 105, 222, 670, 421, 329, 20, 6, 37, 163, 576, 1087, 3001, 1466, 956, 33, 7, 41, 253, 1026, 3383, 5604, 13503, 5403, 2897, 62, 7, 54, 307, 1849, 6814, 20393, 29038, 60408
OFFSET
1,2
COMMENTS
Table starts
..1....2.....2.......3.......3........4........5.........6.........6..........7
..1....3.....5......10......11.......20.......28........37........41.........54
..1....8....15......40......49......105......163.......253.......307........466
..2...20....45.....160.....222......576.....1026......1849......2461.......4195
..4...50...135.....670....1087.....3383.....6814.....13843.....20012......37643
..6..126...421....3001....5604....20393....45472....102595....161277.....338402
.11..329..1466...13503...29038...121774...297210....758766...1313695....3093457
.20..956..5403...60408..150268...709169..1936867...5719495..10916298...28507728
.33.2897.19417..270370..764508..4121638.12941917..43758333..91142820..262001403
.62.8341.69205.1192385.3857845.24622476.88456127.333905794.755234611.2410105286
LINKS
EXAMPLE
Some solutions for n=4 k=4
..4....4....6....6....6....4....4....6....1....4....6....1....4....1....6....6
..4....6....6....3....2....6....2....6....5....5....6....5....6....3....3....2
..1....5....4....5....1....2....2....2....2....1....2....6....6....5....1....4
..1....5....4....2....6....2....1....1....1....2....2....6....4....3....5....4
CROSSREFS
Row 1 is A062298(n+2)
Sequence in context: A293003 A110062 A144215 * A283827 A122087 A139642
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 01 2015
STATUS
approved