login
A254523
Number of permutations of [n] avoiding adjacent step pattern {up}^11.
2
1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916800, 479001599, 6227020775, 87178290682, 1307674357710, 20922789683040, 355687423926240, 6402373618334400, 121645098513933120, 2432901965590252800, 51090941178938707200, 1124000703770606323200
OFFSET
0,3
LINKS
FORMULA
E.g.f.: 1 / Sum_{n>=0} (12*n+1-x)*x^(12*n)/(12*n+1)!.
E.g.f.: 6 / (exp(-x) + cos(x) + 2*cos(x/2)*cosh(sqrt(3)*x/2) - cosh(sqrt(3)*x/2)*sin(x/2) - sin(x) + cosh(x/2)*(2*cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) - cos(sqrt(3)*x/2)*sinh(x/2) - sqrt(3)*cos(x/2)*sinh(sqrt(3)*x/2)).
a(n)/n! ~ c * (1/r)^n, where r = 1.0000000019270853046730165249753673978954992128247736041276... is the root of the equation Sum_{n>=0} (r^(12*n)/(12*n)! - r^(12*n+1)/(12*n+1)!) = 0, equivalently root of the equation exp(-r) + cos(r) + 2*cos(r/2)*cosh(sqrt(3)*r/2) - cosh(sqrt(3)*r/2)*sin(r/2) - sin(r) + cosh(r/2)*(2*cos(sqrt(3)*r/2) - sqrt(3)*sin(sqrt(3)*r/2)) - cos(sqrt(3)*r/2)*sinh(r/2) - sqrt(3)*cos(r/2)*sinh(sqrt(3)*r/2) = 0, c = 3/(r*sqrt((cosh(sqrt(3)*r/2) * sin(r/2) + sin(r))^2 + 2*sqrt(3)*cosh(r/2) * (cosh(sqrt(3)*r/2) * sin(r/2) + sin(r)) * sin(sqrt(3)*r/2) + 3*cosh(r/2)^2 * sin((sqrt(3)*r)/2)^2)) = 1.0000000210373483515818712802156496756788404534079689145773611990529818919... .
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1,
`if`(t<10, add(b(u+j-1, o-j, t+1), j=1..o), 0)+
add(b(u-j, o+j-1, 0), j=1..u))
end:
a:= n-> b(n, 0, 0):
seq(a(n), n=0..30); # after Alois P. Heinz
MATHEMATICA
CoefficientList[Series[6 / (Exp[-x] + Cos[x] + 2*Cos[x/2] * Cosh[Sqrt[3]*x/2] - Cosh[Sqrt[3]*x/2]*Sin[x/2] - Sin[x] + Cosh[x/2] * (2*Cos[Sqrt[3]*x/2] - Sqrt[3]*Sin[Sqrt[3]*x/2]) - Cos[Sqrt[3]*x/2]*Sinh[x/2] - Sqrt[3]*Cos[x/2]*Sinh[Sqrt[3]*x/2]), {x, 0, 25}], x] * Range[0, 25]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Jan 31 2015
STATUS
approved