OFFSET
0,1
COMMENTS
This is the sequence of sixth terms of "third partial sums of m-th powers".
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Luciano Ancora, Demonstration of formulas, page 2.
Luciano Ancora, Recurrence relations for partial sums of m-th powers.
Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
FORMULA
From Colin Barker, Jan 31 2015: (Start)
G.f.: -2*(12276*x^5 - 20578*x^4 + 12831*x^3 - 3766*x^2 + 525*x - 28)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)).
a(n) = 21*a(n-1) - 175*a(n-2) + 735*a(n-3) - 1624*a(n-4) + 1764*a(n-5) - 720*a(n-6). (End)
E.g.f.: exp(x)*(exp(5*x) + 3*exp(4*x) + 6*exp(3*x) + 10*exp(2*x) + 15*exp(x) + 21). - Elmo R. Oliveira, Sep 16 2024
MATHEMATICA
Table[15 2^n + 6 4^n + 10 3^n + 3 5^n + 6^n + 21, {n, 0, 25}] (* Michael De Vlieger, Jan 31 2015 *)
PROG
(PARI) vector(30, n, n--; 15*2^n + 6*4^n + 10*3^n + 3*5^n + 6^n + 21) \\ Colin Barker, Jan 31 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 31 2015
STATUS
approved