login
A254438
Natural numbers k such that k is a multiple of its number of "feasible" partitions.
11
1, 2, 3, 4, 6, 8, 10, 11, 12, 13, 28, 30, 33, 36, 38, 39, 40, 72, 92, 110, 114, 116, 118, 119, 120, 121, 330, 350, 355, 357, 360, 362, 363, 364, 1086, 1088, 1090, 1091, 1092, 1093, 3248, 3270, 3273, 3276, 3278, 3279, 3280, 9792, 9828, 9830, 9834, 9836, 9838, 9839, 9840, 9841, 29376, 29512, 29515, 29517, 29520, 29522, 29523, 29524
OFFSET
1,2
COMMENTS
This sequence lists the natural numbers k that are divisible by A254296(k).
EXAMPLE
For n=1,2,3, A254296(n)=1, so they are in the sequence.
For n=4,6,8,10, A254296(n)=2, so they are in the sequence.
For n=5,9, A254296(n)=2, so they are not in the sequence.
MATHEMATICA
(* This program is not suitable to compute a large number of terms. *)
okQ[v_] := Module[{s=0}, For[i=1, i <= Length[v], i++, If[v[[i]] > 2s+1, Return[False], s += v[[i]]]]; Return[True]];
b[n_] := b[n] = With[{k = Ceiling[Log[3, 2 n]]}, Select[Reverse /@ IntegerPartitions[n, {k}], okQ] // Length];
Reap[Do[If[Divisible[k, b[k]], Print[k]; Sow[k]], {k, 1, 120}]][[2, 1]] (* Jean-François Alcover, Nov 03 2018 *)
KEYWORD
nonn
AUTHOR
Md. Towhidul Islam, Mar 01 2015
EXTENSIONS
a(48)-a(64) added by Md. Towhidul Islam, Apr 18 2015
STATUS
approved