

A254431


Number of "feasible" partitions of the smallest natural number of length n.


10



1, 1, 2, 10, 131, 3887, 262555, 42240104, 16821037273, 17094916187012, 45374905859155948
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

The sequence lists the number of "feasible" partitions of the first natural number (3^(n1)+1)/2 of length n. Here n resembles m in A254296 which describes "feasible" partitions.


LINKS

Table of n, a(n) for n=1..11.
Md Towhidul Islam & Md Shahidul Islam, Number of Partitions of an nkilogram Stone into Minimum Number of Weights to Weigh All Integral Weights from 1 to n kg(s) on a Twopan Balance, arXiv:1502.07730 [math.CO], 2015.


FORMULA

a(n) = A254296((3^(n1)+1)/2).


EXAMPLE

The smallest natural numbers "feasibly" partitionable into 1, 2, 3, 4 and 5 parts respectively are 1,2,5,14 and 41. From A254296, the number of "feasible" partitions of them are 1,1,2,10 and 131.


CROSSREFS

Cf. A254296, A254430, A254432, A254433, A254435, A254436, A254437, A254438, A254439, A254440, A254442.
Sequence in context: A323715 A111135 A097928 * A011838 A336537 A118183
Adjacent sequences: A254428 A254429 A254430 * A254432 A254433 A254434


KEYWORD

nonn,more


AUTHOR

Md. Towhidul Islam, Jan 30 2015


EXTENSIONS

a(10)a(11) from Md. Towhidul Islam, Apr 18 2015


STATUS

approved



