OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of eta(q^2)^5 * eta(q^3)^2 * eta(q^12) / (eta(q)^2 * eta(q^4)^5 * eta(q^6)) in powers of q.
Euler transform of period 12 sequence [ 2, -3, 0, 2, 2, -4, 2, 2, 0, -3, 2, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (144 t)) = (4/3) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A230256.
EXAMPLE
G.f. = 1 + 2*q - 2*q^3 + q^4 + 6*q^5 - 10*q^7 + 3*q^8 + 20*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q] * EllipticTheta[ 4, 0, q^3] QPochhammer[ q^12] / QPochhammer[ q^4]^3, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^5 * eta(x^3 + A)^2 * eta(x^12 + A) / (eta(x + A)^2 * eta(x^4 + A)^5 * eta(x^6 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jan 29 2015
STATUS
approved