OFFSET
1,1
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
Iaroslav V. Blagouchine, A theorem for the closed-form evaluation of the first generalized Stieltjes constant at rational arguments, arXiv:1401.3724 [math.NT], 2015.
Iaroslav V. Blagouchine, A theorem ... (same title), Journal of Number Theory Volume 148, March 2015, Pages 537-592.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal October 2014, Volume 35, Issue 1, pp 21-110.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals: Full PDF text.
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function.
Eric Weisstein's World of Mathematics, Stieltjes Constants.
Wikipedia, Stieltjes constants
FORMULA
Equals integral_[0..infinity] (4*(-2*arctan(4*x) + 4*x*log(1/16 + x^2)))/((-1 + exp(2*Pi*x))*(1 + 16*x^2)) dx - (2 + log(4)/2)*log(4).
EXAMPLE
-5.5180763501994037526940110447766554071079446031857434636...
MAPLE
evalf(int((4*(-2*arctan(4*x)+4*x*log(1/16+x^2)))/((-1+exp(2*Pi*x))*(16*x^2+1)), x = 0..infinity) - (2+(1/2)*log(4))*log(4), 120); # Vaclav Kotesovec, Jan 29 2015
MATHEMATICA
gamma1[1/4] = -1/2*Log[4]^2 - 1/2*EulerGamma*(Pi + Log[64]) - Log[4]*Log[2*Pi] - Log[2*Pi]^2 + Log[Pi]*Log[8*Pi] - 1/2*Pi*Log[8*Pi*Gamma[3/4]^2/Gamma[1/4]^2] + StieltjesGamma[1] - Derivative[2, 0][Zeta][0, 1/2] // Re; RealDigits[gamma1[1/4], 10, 103] // First
(* Or, from Mma version 7 up: *) RealDigits[StieltjesGamma[1, 1/4], 10, 103] // First
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jan 29 2015
STATUS
approved