login
A254347
Decimal expansion of gamma_1(1/4), the first generalized Stieltjes constant at 1/4 (negated).
10
5, 5, 1, 8, 0, 7, 6, 3, 5, 0, 1, 9, 9, 4, 0, 3, 7, 5, 2, 6, 9, 4, 0, 1, 1, 0, 4, 4, 7, 7, 6, 6, 5, 5, 4, 0, 7, 1, 0, 7, 9, 4, 4, 6, 0, 3, 1, 8, 5, 7, 4, 3, 4, 6, 3, 6, 1, 4, 2, 9, 4, 5, 2, 4, 8, 6, 0, 2, 1, 9, 3, 0, 7, 7, 8, 5, 0, 7, 0, 3, 8, 7, 0, 6, 9, 7, 0, 8, 4, 1, 9, 4, 9, 9, 0, 3, 7, 4, 8, 0, 1, 5, 5
OFFSET
1,1
LINKS
Iaroslav V. Blagouchine, A theorem ... (same title), Journal of Number Theory Volume 148, March 2015, Pages 537-592.
Iaroslav V. Blagouchine, Rediscovery of Malmsten’s integrals, their evaluation by contour integration methods and some related results, The Ramanujan Journal October 2014, Volume 35, Issue 1, pp 21-110.
Eric Weisstein's World of Mathematics, Hurwitz Zeta Function.
Eric Weisstein's World of Mathematics, Stieltjes Constants.
FORMULA
Equals integral_[0..infinity] (4*(-2*arctan(4*x) + 4*x*log(1/16 + x^2)))/((-1 + exp(2*Pi*x))*(1 + 16*x^2)) dx - (2 + log(4)/2)*log(4).
EXAMPLE
-5.5180763501994037526940110447766554071079446031857434636...
MAPLE
evalf(int((4*(-2*arctan(4*x)+4*x*log(1/16+x^2)))/((-1+exp(2*Pi*x))*(16*x^2+1)), x = 0..infinity) - (2+(1/2)*log(4))*log(4), 120); # Vaclav Kotesovec, Jan 29 2015
MATHEMATICA
gamma1[1/4] = -1/2*Log[4]^2 - 1/2*EulerGamma*(Pi + Log[64]) - Log[4]*Log[2*Pi] - Log[2*Pi]^2 + Log[Pi]*Log[8*Pi] - 1/2*Pi*Log[8*Pi*Gamma[3/4]^2/Gamma[1/4]^2] + StieltjesGamma[1] - Derivative[2, 0][Zeta][0, 1/2] // Re; RealDigits[gamma1[1/4], 10, 103] // First
(* Or, from Mma version 7 up: *) RealDigits[StieltjesGamma[1, 1/4], 10, 103] // First
CROSSREFS
Cf. A001620 (gamma), A082633 (gamma_1), A254327 (gamma_1(1/2)), A254331 (gamma_1(1/3)), A254345 (gamma_1(2/3)), A254348 (gamma_1(3/4)), A254349 (gamma_1(1/6)), A254350 (gamma_1(5/6)), A251866 (gamma_1(1/5)), A255188 (gamma_1(1/8)), A255189 (gamma_1(1/12)).
Sequence in context: A097566 A154945 A300710 * A011094 A319569 A204005
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved